Stars use nuclear fusion of hydrogen to helium to create the energy they emit.
Spectrometers are used for this. By looking at the spectrum of light coming from the star, scientists can tell which elements are in the star by the pattern of lines that are known to be associated with certain elements.
By looking at the lines in a star's spectrum of light, astronomers can tell what kinds of elements the star is made of. This happens because when a beam of light hits an atom or molecule, that atom absorbs a characteristic wavelength (color) of visible light. Scientists have made a huge list of different elements and the different patterns of lines observed in theirj corresponding "spectra" (fancy word for light spectrums), and by using such lists can deduce precisely what each star is made of.
The black lines (absorption lines) in a star's spectrum are caused by elements in the star's outer layers absorbing specific wavelengths of light. These elements absorb light at certain frequencies, creating dark lines by removing energy from the incoming light. By analyzing these absorption lines, scientists can determine the elements present in the star and study its properties.
Elements are identified based on their absorption spectra. Every element absorbs a unique set of frequencies when light passes through it. Scientists can determine which elements are present based on which portions of the star's light are absorbed.
Stars derive their heat and light from the process of nuclear fusion, by which hydrogen becomes helium and other, even heavier elements.
c) by its light
Scientists can assess which elements are present in the star, by looking at the light it gives off and breaking this light down into the different colours that make up the total colour. They look at the spectrum given off. The different elements present in the star cause different light wavelengths (or colours) to be emitted.
Spectrometers are used for this. By looking at the spectrum of light coming from the star, scientists can tell which elements are in the star by the pattern of lines that are known to be associated with certain elements.
The surface temperature of a star is a key property used to determine what elements it can create through nuclear fusion in its core. Different elements require different temperatures to undergo fusion, with heavier elements typically requiring higher temperatures. This temperature determines the rate of nuclear reactions and the types of elements produced in a star.
The dependent ability for elements to absorb light in steller atmospheres is the surface temperature of the star.
You can tell how big a star is using light and you can tell what elements it is made from using light.
Iron
every star has different elements in the atmosphere which absorbs the light
By looking at the lines in a star's spectrum of light, astronomers can tell what kinds of elements the star is made of. This happens because when a beam of light hits an atom or molecule, that atom absorbs a characteristic wavelength (color) of visible light. Scientists have made a huge list of different elements and the different patterns of lines observed in theirj corresponding "spectra" (fancy word for light spectrums), and by using such lists can deduce precisely what each star is made of.
Elements are the same size regardless of how they are synthesized. It is true, however, that small stars create fewer elements, and that the elements they create are lighter. A normal G-type star can, during the course of its evolution along the Main Sequence, produce elements up to iron. For elements heavier than that, larger stars are required; when they go nova, they can produce elements as heavy as uranium and beyond.
Inside stars atoms are fused together to form heavier elements in a process called nuclear fusion. Our very own Sun is our closest star. Our Sun fuses hydrogen atoms together to form helium. Our Sun will eventually produce heavier elements when it reaches a certain age, and will in fact create even heavier elements as it dies! This process of fusion releases energy in the form of heat and light. The light travels from the star to your eye and you can see it. Interestingly, because light takes time to travel this distance, when you look at stars you are actually seeing them as they were in the past.
The black lines (absorption lines) in a star's spectrum are caused by elements in the star's outer layers absorbing specific wavelengths of light. These elements absorb light at certain frequencies, creating dark lines by removing energy from the incoming light. By analyzing these absorption lines, scientists can determine the elements present in the star and study its properties.