answersLogoWhite

0

Gravity.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Astronomy

What is a force that causes a nebula to contract?

A key force that causes a nebula to contract is gravity. The mass of the gas and dust within the nebula generates gravitational attraction, pulling particles closer together. As these particles coalesce, their density increases, leading to further gravitational collapse. Additionally, other factors such as shock waves from nearby supernovae can trigger the contraction process by compressing the nebula.


What force is responsible for the nebula to come together?

Gravity is the force responsible for pulling particles within a nebula together. As particles within the nebula are attracted to each other by gravity, they gradually collapse and become more compact, eventually leading to the formation of stars and planets.


What 2 forces balance each other to keep of nebula dust and gas from collapsing or flying apart?

Gravitational force pulls the dust and gas inward, trying to collapse the nebula, while outward gas pressure from nuclear fusion reactions occurring in the core of the nebula pushes back, preventing the collapse. These two forces are in equilibrium, keeping the nebula stable.


What forces act on nebula?

The main forces acting on a nebula are gravity, which causes the nebula to collapse and form stars, and radiation pressure, which can push material away from the forming stars. Additionally, magnetic fields can play a role in shaping the structure and dynamics of a nebula.


What causes a nebula to collapse into a dense of mass?

A nebula can collapse into a dense mass when its gravitational attraction overcomes the outward pressure of gas and dust within it. This collapse can be triggered by external forces, such as a nearby supernova explosion or a shock wave from a passing star, causing the nebula to start contracting due to gravity. As the material compacts, its density increases, eventually leading to the formation of a protostar or a star.

Related Questions

What is a force that causes a nebula to contract?

A key force that causes a nebula to contract is gravity. The mass of the gas and dust within the nebula generates gravitational attraction, pulling particles closer together. As these particles coalesce, their density increases, leading to further gravitational collapse. Additionally, other factors such as shock waves from nearby supernovae can trigger the contraction process by compressing the nebula.


What force is responsible for the nebula to come together?

Gravity is the force responsible for pulling particles within a nebula together. As particles within the nebula are attracted to each other by gravity, they gradually collapse and become more compact, eventually leading to the formation of stars and planets.


Do protostars form when gravity causes dense parts of a star-forming nebulae to expand?

No. A protostar forms when gravity causes dense parts of a nebula to collapse. Since gravity is an attractive force it does not make any sense that it would cause something to expand.


What 2 forces balance each other to keep of nebula dust and gas from collapsing or flying apart?

Gravitational force pulls the dust and gas inward, trying to collapse the nebula, while outward gas pressure from nuclear fusion reactions occurring in the core of the nebula pushes back, preventing the collapse. These two forces are in equilibrium, keeping the nebula stable.


What forces act on nebula?

The main forces acting on a nebula are gravity, which causes the nebula to collapse and form stars, and radiation pressure, which can push material away from the forming stars. Additionally, magnetic fields can play a role in shaping the structure and dynamics of a nebula.


What causes a nebula to collapse into a dense of mass?

A nebula can collapse into a dense mass when its gravitational attraction overcomes the outward pressure of gas and dust within it. This collapse can be triggered by external forces, such as a nearby supernova explosion or a shock wave from a passing star, causing the nebula to start contracting due to gravity. As the material compacts, its density increases, eventually leading to the formation of a protostar or a star.


What causes the densest parts of the nebula to collapse?

The densest parts of a nebula collapse primarily due to gravitational forces. As regions within the nebula become denser, their gravitational pull increases, attracting surrounding gas and dust. When the pressure and density reach a critical threshold, the intense gravitational forces overpower the internal thermal pressure, leading to the collapse of these regions. This process can initiate star formation as the collapsing material forms a protostar.


What type of forces cuased the solar nebula to contract?

The force of gravity caused the solar nebula to contract. As the nebula collapsed under its own gravity, it began to spin and flatten into a disk shape, eventually forming the Sun and the planets. Additionally, the heat and pressure generated by the gravitational contraction contributed to the collapse of the nebula.


Is a nebula held together of the outward force of gravity?

Yes, a nebula is held together by gravity. Gravity causes the gas and dust within a nebula to contract and clump together, eventually forming stars and other celestial bodies.


Which did not occur during the collapse of the solar nebula?

One of the events that did not occur during the collapse of the solar nebula was the formation of the first stars in the universe. Instead, the collapse of the solar nebula led to the formation of our solar system.


Does a nebula turn into a white dwarf?

A nebula does not directly turn into a white dwarf. A nebula will collapse to form stars. Low to medium mass stars become white dwarfs after they die. Some are the result of a supernova and do not collapse, they merely dissipate over time. The Crab Nebula is the most prominent example of this.


What causes a solar nebula to initially begin to form a solar?

A solar nebula begins to form when a cloud of gas and dust in space collapses under its own gravity. This collapse can be triggered by a nearby supernova explosion, a shockwave from a passing star, or other disturbances in the interstellar medium.