Gravity.
Gravity is the force responsible for pulling particles within a nebula together. As particles within the nebula are attracted to each other by gravity, they gradually collapse and become more compact, eventually leading to the formation of stars and planets.
Gravitational force pulls the dust and gas inward, trying to collapse the nebula, while outward gas pressure from nuclear fusion reactions occurring in the core of the nebula pushes back, preventing the collapse. These two forces are in equilibrium, keeping the nebula stable.
The main forces acting on a nebula are gravity, which causes the nebula to collapse and form stars, and radiation pressure, which can push material away from the forming stars. Additionally, magnetic fields can play a role in shaping the structure and dynamics of a nebula.
A nebula can collapse into a dense mass when its gravitational attraction overcomes the outward pressure of gas and dust within it. This collapse can be triggered by external forces, such as a nearby supernova explosion or a shock wave from a passing star, causing the nebula to start contracting due to gravity. As the material compacts, its density increases, eventually leading to the formation of a protostar or a star.
The force of gravity caused the solar nebula to contract. As the nebula collapsed under its own gravity, it began to spin and flatten into a disk shape, eventually forming the Sun and the planets. Additionally, the heat and pressure generated by the gravitational contraction contributed to the collapse of the nebula.
Gravity is the force responsible for pulling particles within a nebula together. As particles within the nebula are attracted to each other by gravity, they gradually collapse and become more compact, eventually leading to the formation of stars and planets.
No. A protostar forms when gravity causes dense parts of a nebula to collapse. Since gravity is an attractive force it does not make any sense that it would cause something to expand.
Gravitational force pulls the dust and gas inward, trying to collapse the nebula, while outward gas pressure from nuclear fusion reactions occurring in the core of the nebula pushes back, preventing the collapse. These two forces are in equilibrium, keeping the nebula stable.
The main forces acting on a nebula are gravity, which causes the nebula to collapse and form stars, and radiation pressure, which can push material away from the forming stars. Additionally, magnetic fields can play a role in shaping the structure and dynamics of a nebula.
A nebula can collapse into a dense mass when its gravitational attraction overcomes the outward pressure of gas and dust within it. This collapse can be triggered by external forces, such as a nearby supernova explosion or a shock wave from a passing star, causing the nebula to start contracting due to gravity. As the material compacts, its density increases, eventually leading to the formation of a protostar or a star.
The force of gravity caused the solar nebula to contract. As the nebula collapsed under its own gravity, it began to spin and flatten into a disk shape, eventually forming the Sun and the planets. Additionally, the heat and pressure generated by the gravitational contraction contributed to the collapse of the nebula.
Yes, a nebula is held together by gravity. Gravity causes the gas and dust within a nebula to contract and clump together, eventually forming stars and other celestial bodies.
One of the events that did not occur during the collapse of the solar nebula was the formation of the first stars in the universe. Instead, the collapse of the solar nebula led to the formation of our solar system.
A nebula does not directly turn into a white dwarf. A nebula will collapse to form stars. Low to medium mass stars become white dwarfs after they die. Some are the result of a supernova and do not collapse, they merely dissipate over time. The Crab Nebula is the most prominent example of this.
A solar nebula begins to form when a cloud of gas and dust in space collapses under its own gravity. This collapse can be triggered by a nearby supernova explosion, a shockwave from a passing star, or other disturbances in the interstellar medium.
Because the rotation of the nebula creates an inward force to the center of the cloud.
Pressure and gravitymay have become unbalanced in thesolar nebula because of an externalforce such as a collision of the solarnebula with another nebula or from anearby exploding star. This type offorce, was strong enough to overcomethe pressure of the nebula and triggerits collapse.