Gravity depends largely on mass, the bigger the planet the greater the gravity should be
Pilots first instrument used in flying was a compass so they could orient themselves in what direction they've been heading and should head based on time and speed.
Pilots and sailors first instrument used in flying and sailing was a compass so they could orient themselves in what direction they've been heading and should head based on time and speed.
"Both will hit the moon at the same time?" Not Absolutely True.This may not be absolutely true since every object has its own gravity which is greater if its mass is greater. So the hammer has a gravity much greater than that of the feather. Therefore the combined gravity of the hammer and that of the moon (which pulls the hammer and moon towards each other) is greater than that of the feather and the moon.As such the hammer should collide with the moon marginally earlier than that between the feather and the moon, though this difference is so minute that we assume that the collisions occur simultaneously.However, if the hammer and feather are dropped together, then as the hammer's gravity pulls the moon towards itself, it also pull the moon towards the feather and as such the lucky feather may get a free ride and hits the moon at the same time as the hammer.But even with this help, the feather will still take a slightly longer time to collide with the moon as the gravity from the hammer will cause the flight path of the feather to curve towards the hammer and as such takes a longer path and hence a longer time to hit the moon.To be fair, the experiment should be done dropping the feather first, then the hammer and then see the different times taken.All the above are valid only on the assumption that the centre of gravity is the part that hits the moon but since this is not true, we also have to take into account which part of the hammer or feather is nearest to the moon before the two objects were released !So, the real answer is that there is not enough data for us to know which will hit the moon first !
Apollo 15 astronaut Dave Scott dropped the hammer and feather to show that since there is no air friction on the moon, and the acceleration of an object by gravity does not depend on the mass of the object.The above experiment is supposed to prove the equivalence principle which states that the acceleration an object feels due to gravity does not depend on its mass, density, composition, colour or shape."Both will hit the moon at the same time?"Answer:If you drop a hammer and a feather from the same height on earth, the hammer will hit the ground first as the feather is slowed down drastically by air resistance.But on the moon, because it is a vacuum, and since the acceleration of an object is the same as the gravity i.e. a = g and the mass is not in the equation, all objects will have the same acceleration and hence the hammer should fall to the surface of moon at the same time as the feather but:"Both will hit the moon at the same time as believed by most scientists?"This may not be absolutely true since every object has its own gravity which is greater if its mass is greater. So the hammer has a gravity much greater than that of the feather. Therefore the combined gravity of the hammer and that of the moon (which pulls the hammer and moon towards each other) is greater than that of the feather and the moon.As such the hammer should collide with the moon marginally earlier than that between the feather and the moon, though this difference is so minute that we assume that the collisions occur simultaneously.However, if the hammer and feather are dropped together, then as the hammer's gravity pulls the moon towards itself, it also pull the moon towards the feather and as such the lucky feather may get a free ride and hits the moon at the same time as the hammer.To be fair, the experiment should be done dropping the objects individually e.g. feather first, then the hammer and then see whether the times taken are the same or not.All the above are valid only on the assumption that the centre of gravity is the part that hits the moon but since this is not necessarily true, we also have to take into account which part of the hammer or feather is nearest to the moon before the two objects were released (assuming that the centre of gravity of both objects are at the same level on release) !The real answer is that there is not enough data for us to know which will hit the moon first !
electron microscope
Electron Microscope
To examine objects at greater than 200x magnification, a compound microscope is ideal. This instrument uses multiple lenses to achieve high levels of magnification and is suitable for observing small specimens like cells and microorganisms. For even higher magnifications, such as in the study of fine structures, an electron microscope may be used, which can exceed magnifications of 1000x.
To examine objects at magnifications greater than 200x, a microscope is typically used. For most applications, a compound microscope is suitable, as it can achieve high magnifications through the combination of objective and ocular lenses. For even higher magnifications, such as those needed in microbiology or materials science, a specialized microscope like a digital microscope or an electron microscope may be required.
To examine specimens at greater than 200x magnification, a compound microscope is typically used. These microscopes utilize multiple lenses to achieve high magnifications, often up to 1000x or more. For even higher magnifications, such as in the range of 1000x to 2000x, specialized microscopes like oil immersion microscopes or electron microscopes may be employed, depending on the specimen and the level of detail required.
All you need is a scale. you should use a scale that measures in grams.
Depends on the instrument but if u are a new player don't touch anything let your teacher do it
no
the instrument should have strings like a guitar or a violin
yes
The density of a substance should be greater than the density of the fluid it is placed in for it to sink. This is because objects sink when they are denser than the fluid they are in, causing them to displace the fluid and sink to the bottom.
All you need is a scale. you should use a scale that measures in grams.