answersLogoWhite

0

low-power magnificatin = (10x)(4x) = 40x high-power magnification = (10x)(40x) = 400x It depends on what magnification you are looking for; high-power magnification OR low-power magnification.

User Avatar

Wiki User

17y ago

What else can I help you with?

Continue Learning about Astronomy
Related Questions

Calculate the magnification of a microscope that has a 8x eye piece and 10x and 40x objectives?

To calculate the total magnification of a microscope, you multiply the magnification of the eyepiece by the magnification of the objective lens in use. For the 10x objective, the total magnification would be 8x (eyepiece) * 10x (objective) = 80x. For the 40x objective, the total magnification would be 8x (eyepiece) * 40x (objective) = 320x.


How is the magnification of compound light microscope determined?

The magnification of a compound light microscope is determined by multiplying the magnification of the ocular lens (eyepiece) by the magnification of the objective lens. For example, if the ocular lens has a magnification of 10x and the objective lens has a magnification of 40x, the total magnification would be 10x * 40x = 400x.


Magnification of a light microscope with an objective lens of 40x?

The total magnification of a light microscope with a 40x objective lens is calculated by multiplying the magnification of the objective lens by the magnification of the eyepiece lens. Assuming a standard eyepiece magnification of 10x, the total magnification would be 400x (40x objective lens * 10x eyepiece lens = 400x total magnification).


What is the total magnification if the objective lens is 4x and the ocular lens is 10x?

The total magnification is calculated by multiplying the magnification of the objective lens by the magnification of the ocular lens. In this case, 4x (objective lens) x 10x (ocular lens) = 40x total magnification.


How do you calculate the total magnification capacity of a microscope?

To calculate the total magnification of a microscope, you multiply the magnification of the objective lens by the magnification of the eyepiece. For example, if the objective lens has a magnification of 40x and the eyepiece has a magnification of 10x, the total magnification would be 40x * 10x = 400x.


What is a objective lenses?

its is a range from 10X to 40X magnification located on the nosepiece.


What is objective lenses?

its is a range from 10X to 40X magnification located on the nosepiece.


How do you calculate the magnification of a microscope from the magnification of the eyepiece and objective?

To calculate the total magnification of a compound microscope, you simply multiply the magnification of the eyepiece by the magnification of the objective. For example, if the eyepiece magnifies 10x and the objective magnifies 40x, then the total magnification is 10x * 40x = 400x.


What is the total magnification of a microscope with a 10x Eyepiece and a 40x Objective?

The total magnification of the microscope when using the 40x objective depends on the strength of the eye piece lens. Typically a 10x eye piece lens is used in college microscopes this would give 40x10 = 400x magnification.


When using a microscope with a 10x ocular and the 40x objective plane what is total magnification?

400x


When scanning 4 times objective is Used the total magnification will be?

When using a 4x objective lens on a microscope, the total magnification is calculated by multiplying the objective lens magnification by the eyepiece magnification. If the eyepiece (ocular) lens is typically 10x, the total magnification would be 4x (objective) × 10x (eyepiece) = 40x. Therefore, when scanning with a 4x objective, the total magnification will be 40x.


How do you find the total magnifying power of a microscope?

MP=(d/L)*(1-(L-l)f) where d would be the distance from the eye to the image without a lens L is the distance from the eye to the new virtual image (with a lens) l is the distance from the eye to the lens this equation only covers a single lens (whereas there tend to be two in a microscope), but that's no worry; use it twice! (i.e treat both lenses as independent sources of the image)