No, a bowling ball (or any other object) has exactly the same inertial mass no matter where it is (its actual inertia will, of course, depend upon its velocity as well as its inertial mass). Weight changes on the moon, but inertia doesn't.
The moon stabilizes the Earth's axial tilt, like a counter balance. Picture someone swinging a bowling ball around their body, at the end of a 3 foot (1 meter) chain. If they get the ball spinning fast enough, they will have to lean back to counter the centrifugal force of the bowling ball. When the rotational velocity is stable, and the person's angle of leaning is stable, it is a suitable representation of the Earth-Moon system. The bowling ball is the moon, the person is the Earth.
1.5 Kilos. Since the moon's gravity is approximately one sixth of that on the earth - divide the 9 by 6 !
No. The mass of the moon is a fraction of the earth's mass.
No, the mass of the rubber ball would remain the same on the moon as it is on Earth. Mass is a measure of the amount of matter in an object and is independent of the gravitational field it is in. However, the weight of the rubber ball would be less on the moon due to the moon's weaker gravitational pull.
You need to understand that MASS is an intrinsic property of matter, the Bowling ball will have the same mass no matter where it is. WEIGHT is the pull of gravity on matter. As gravity is weaker/less on the Moon as compared to Earth, the same size lump of matter (the bowling ball) will weigh less on the Moon as it does on Earth. The problem in understanding this difference happens because as we live on Earth we confused MASS and WEIGHT before we understood the physics. On Earth a 1 Kg mass weighs 1 Kg, however if we take that 1 kg mass to the Moon where gravity is only one third of that on Earth it will only weigh 1/3 Kg. However, there is another property of matter that is related directly to its Mass and that is the energy you need to put in to get it to move (or stop moving) - this is called INERTIA. Weather on the Moon or on the Earth the INERTIA of the bowling ball will remain the same. If you roll it to another person on a horizontal surface on the Moon or on Earth, the person you roll it to will find it just as hard to stop in both places.
You need to understand that MASS is an intrinsic property of matter, the bowling ball will have the same mass no matter where it is. WEIGHT is the pull of gravity on matter. As gravity is weaker/less on the Moon as compared to Earth, the same size lump of matter (the bowling ball) will weigh less on the Moon as it does on Earth. The problem in understanding this difference happens because as we live on Earth we confused MASS and WEIGHT before we understood the physics. On Earth a 1 Kg mass weighs 1 Kg, however if we take that 1 kg mass to the Moon where gravity is only one third of that on Earth it will only weigh 1/3 Kg. However, there is another property of matter that is related directly to its Mass and that is the energy you need to put in to get it to move (or stop moving) - this is called INERTIA. Weather on the Moon or on the Earth the INERTIA of the bowling ball will remain the same. If you roll it to another person on a horizontal surface on the Moon or on Earth, the person you roll it to will find it just as hard to stop in both places.
No, a bowling ball (or any other object) has exactly the same inertial mass no matter where it is (its actual inertia will, of course, depend upon its velocity as well as its inertial mass). Weight changes on the moon, but inertia doesn't.
25.41
Gravity does not affect total mass, no matter where in the universe the bowling ball travels. Therefore, a 7 kilogram bowling ball will always be 7 kilograms.
The moon stabilizes the Earth's axial tilt, like a counter balance. Picture someone swinging a bowling ball around their body, at the end of a 3 foot (1 meter) chain. If they get the ball spinning fast enough, they will have to lean back to counter the centrifugal force of the bowling ball. When the rotational velocity is stable, and the person's angle of leaning is stable, it is a suitable representation of the Earth-Moon system. The bowling ball is the moon, the person is the Earth.
A bowling ball and a piece of paper will fall at the same rate on the Moon.This is because gravity pulls at a constant rate. The force of gravity depends on the mass of the Moon, which is constant, and not on the mass of each object falling.On Earth, the piece of paper will fall much slower than the bowling ball because of air resistance. Because there is no air on the Moon, both objects will fall at the same rate.
The bowling ball would have the least gravitational potential energy when lifted to a height of 1 m on the moon, as the moon has less gravitational pull compared to Earth. This means that the gravitational potential energy of the ball is lower on the moon than on Earth when lifted to the same height.
Yes, both the bowling ball and the paper will fall at the same rate near the surface of the moon due to the moon's weaker gravitational pull. In the absence of air resistance, all objects will fall at the same rate regardless of their mass.
His general theory of relativity explains that gravity is produced by the bending of space. There is a formula to calculate the gravity of an objects gravity directly related to the mass of the object. Think of a trampoline with a heavy bowling ball in the very center. If you set a golf ball on the edge of the trampoline it will roll to the bowling ball due to the bending of the trampoline fabric. If you were to roll the golf ball around the trampoline instead of at the bowling ball you will notice the golf ball will make several rotations around the bowling ball befor hitting it. Now imagine the mass of the bowling ball has increased 100 fold, it would bend the fabric of the trampoline to the ground in the center. If you were to set the golf ball on the edge of the trampoline now you would see it fall to the center much much faster than it did earlier. This is a simple explanation of why the moon circles the earth, or earth the sun. The moon is actually falling towards earth but moves to fast it keeps missing it. These ideas are fundamental to our understanding of gravity, which we would never know had Einstein not written his paper.
1.5 Kilos. Since the moon's gravity is approximately one sixth of that on the earth - divide the 9 by 6 !
1 earth mass = 81.78 moon mass (rounded)1 moon mass = 0.01223 earth mass = 1.223% of earth mass (rounded)The mass of the moon is only 1.2 percent of the mass of Earth.