In the atmosphere, temperatures increase with altitude in the stratosphere. This layer, which lies above the troposphere, contains the ozone layer that absorbs and scatters ultraviolet solar radiation, leading to a warming effect as altitude increases. Consequently, the stratosphere experiences a temperature inversion, contrasting with the troposphere, where temperatures typically decrease with altitude.
The layers of the atmosphere, starting from the Earth’s surface, are the troposphere, stratosphere, mesosphere, thermosphere, and exosphere. In the troposphere, temperature generally decreases with altitude. However, in the stratosphere, temperature starts to increase with altitude due to the absorption of ultraviolet radiation by the ozone layer. In the mesosphere, temperatures again decrease with altitude, while in the thermosphere, temperatures rise dramatically as altitude increases.
The layer above the photosphere is called the chromosphere. It is a region of the Sun's atmosphere where temperatures increase with altitude. Above the chromosphere lies the corona, which is the outermost layer of the Sun's atmosphere.
The stratosphere is the layer of the atmosphere that is relatively calm and has stable temperatures. This layer is above the troposphere and contains the ozone layer, which helps trap heat in the atmosphere. Temperatures in the stratosphere increase with altitude due to the absorption of ultraviolet radiation by the ozone layer.
Temperatures decrease in the troposphere due to the Earth's surface heating the air above it; as altitude increases, the air becomes less dense and can hold less heat. In contrast, temperatures increase in the stratosphere because of the absorption of ultraviolet radiation by the ozone layer, which warms the air at higher altitudes. This temperature inversion creates a stable atmosphere in the stratosphere, contrasting with the more turbulent conditions of the troposphere.
The hottest layer in the atmosphere is the thermosphere, which can reach temperatures of up to 2,500 degrees Celsius (4,500 degrees Fahrenheit). Temperatures in the thermosphere increase with altitude due to the absorption of high-energy solar radiation.
In the atmosphere, the temperature rises with altitude in the stratosphere. This increase is primarily due to the absorption of ultraviolet (UV) radiation by the ozone layer, which is located within this layer. As altitude increases, the concentration of ozone increases, leading to higher temperatures.
The layers of the atmosphere, starting from the Earth’s surface, are the troposphere, stratosphere, mesosphere, thermosphere, and exosphere. In the troposphere, temperature generally decreases with altitude. However, in the stratosphere, temperature starts to increase with altitude due to the absorption of ultraviolet radiation by the ozone layer. In the mesosphere, temperatures again decrease with altitude, while in the thermosphere, temperatures rise dramatically as altitude increases.
No, as altitude increases in the Troposphere, the temperature generally decreases. This is because the Troposphere is the layer of the Earth's atmosphere where weather occurs, and the temperature decreases with altitude due to the decrease in air pressure and thinning of the air molecules that can store heat.
Stratosphere. This is because the stratosphere is above the troposphere and contains the ozone layer, which absorbs UV radiation from the sun, causing temperatures to increase with altitude.
As altitude increases, barometric pressure decreases. This is because the air pressure decreases with increasing altitude, as there are fewer air molecules in the atmosphere exerting pressure on a given area.
The temperature decreases
Yes.
No. Atmospheric pressure decreases as altitude increases.
The layer above the photosphere is called the chromosphere. It is a region of the Sun's atmosphere where temperatures increase with altitude. Above the chromosphere lies the corona, which is the outermost layer of the Sun's atmosphere.
Temperature decreases as altitude increases because there are less molecules in the atmosphere to hold in the heat.
B. Stratosphere. In the stratosphere, temperatures generally increase with altitude due to the presence of the ozone layer, which absorbs ultraviolet radiation from the sun and heats the surrounding air.
The stratosphere is the layer of the atmosphere that is relatively calm and has stable temperatures. This layer is above the troposphere and contains the ozone layer, which helps trap heat in the atmosphere. Temperatures in the stratosphere increase with altitude due to the absorption of ultraviolet radiation by the ozone layer.