Basicaly, the farther away from the sun the planet is, the more elliptical the orbit is because as a planet moves away from the sun it is losing attraction so it goes further, but eventually when it turns around, it get pulled almost directly at the sun. so it comes very close to the sun but then with all the speed it has gained, it manages to hurtle by with tremendous amount of momentum which is what allows it so get so far away from the sun again and repeat the cycle.
Hope that helps
The gravitational pull exerted by the Sun, which acts as the central force keeping planets in orbit, causes them to move along elliptical paths. The conservation of angular momentum ensures that planets travel in elliptical orbits, with their speed varying at different points along the orbit to maintain this balance.
Mercury: Elliptical Venus: Elliptical Earth: Elliptical Mars: Elliptical Jupiter: Elliptical Saturn: Elliptical Uranus: Elliptical Neptune: Elliptical All planets revolve around the Sun in elliptical orbits, with the Sun located at one of the two foci of the ellipse.
NO!!! The planets do NOT orbit in circles. They orbit the Sun in an ellipsoidal manner. An ellipse has two foci. The Sun lies at one of the foci, the other might be deemed to be a 'blind' focus. The Sun does NOT lie at the centre of the ellipse. Also the satellites(moons) orbit their parent planets in a similar manner. It has also been discovered that the planets in an an ellipsoidal manner. That is as each orbit is completed the planet 'over-shoot' their starting point, and the ellipse does not close . See Johannes Kepler, who gave us the Law of orbiting planets sweeping equal arcs in equal times , in 1602 AD.
According to Keplers first law of 1618 which has not been repealed yet, the planets each move in an elliptical orbit with the Sun occupying one focus. The shape of an ellipse is described by the eccentricity. For low eccentricity such as the planets' orbits have, the orbit is very close to being a circle but the most significant difference is that the Sun is off-centre.
Gravity and the laws of motion, specifically Newton's laws of motion, work together to keep planets in their orbits around the sun. Gravity from the sun pulls the planets towards it, while the inertia of the planets moving in a straight line causes them to travel in an elliptical orbit around the sun.
Mercury and Pluto have the most elliptical orbits among the planets in our solar system. Mercury's orbit is the most eccentric, while Pluto's orbit is also highly elliptical due to its distance from the Sun and its eccentric orbit.
Yes, according to Kepler's laws of planetary motion, the orbit of each planet around the Sun is an ellipse with the Sun at one of the two foci. This means that the planet's distance from the Sun varies throughout its orbit.
gravity and inertia
The gravitational pull exerted by the Sun, which acts as the central force keeping planets in orbit, causes them to move along elliptical paths. The conservation of angular momentum ensures that planets travel in elliptical orbits, with their speed varying at different points along the orbit to maintain this balance.
Earth and Venus DO follow elliptical orbits around the sun (though the orbit of Venus is only very slightly elliptical). Earth's orbit being elliptical is, combined with our axial tilt, why we have seasons.
Mercury: Elliptical Venus: Elliptical Earth: Elliptical Mars: Elliptical Jupiter: Elliptical Saturn: Elliptical Uranus: Elliptical Neptune: Elliptical All planets revolve around the Sun in elliptical orbits, with the Sun located at one of the two foci of the ellipse.
NO!!! The planets do NOT orbit in circles. They orbit the Sun in an ellipsoidal manner. An ellipse has two foci. The Sun lies at one of the foci, the other might be deemed to be a 'blind' focus. The Sun does NOT lie at the centre of the ellipse. Also the satellites(moons) orbit their parent planets in a similar manner. It has also been discovered that the planets in an an ellipsoidal manner. That is as each orbit is completed the planet 'over-shoot' their starting point, and the ellipse does not close . See Johannes Kepler, who gave us the Law of orbiting planets sweeping equal arcs in equal times , in 1602 AD.
The orbits of planets are actually elliptical, not perfectly circular. An ellipse is a stretched-out circle. The shape of a planet's orbit can be described as an ellipse with the Sun at one of the two foci.
The orbits of planets are elliptical in shape, with the Sun located at one of the two foci of the ellipse. This discovery was made by Johannes Kepler in the early 17th century, after analyzing the precise astronomical data gathered by Tycho Brahe. Kepler formulated his First Law of Planetary Motion, which states that planets move in elliptical orbits, revolutionizing the understanding of celestial mechanics and replacing the earlier belief in circular orbits.
Pluto and Abby University
You can determine which of two orbits is most elliptical by comparing the eccentricities of the orbits. The orbit with the higher eccentricity is more elliptical. Eccentricity measures how stretched out an orbit is, with a value of 0 indicating a perfectly circular orbit and a value closer to 1 indicating a highly elliptical orbit.
It is very improbable that any planet that orbits any star follows a circular path. Most, if not all, planets are in elliptical orbits around their respective stars, where the star is roughly at one of the two centers of the elliptical path. This means that the distance of any planet from its star is changing throughout the planet's year.