well my reason is that the betelgeuse must be very large , because they said that the betelgeuse is located far from earth .
well my reason is that the betelgeuse must be very large , because they said that the betelgeuse is located far from earth .
No, Betelgeuse has a lower absolute magnitude compared to the Sun. Betelgeuse is a red supergiant star with a much larger luminosity, making it appear brighter despite its greater distance from Earth.
The apparent magnitude is how bright the star appears to us, but stars are all at different distances so that a star that is really bright might look dim because it is very far away. So the absolute magnitude measures how bright the star would look if it was placed at a standard distance of 10 parsecs. When the absolute magnitude is greater than the apparent magnitude, it just means that it is closer than 10 pc. The brightest stars have absolute magnitudes around -7.
No, which means that Rigel appears brighter.
Anything that is not the measure of intrinsic brightness of a celestial object.
well my reason is that the betelgeuse must be very large , because they said that the betelgeuse is located far from earth .
No, Betelgeuse has a lower absolute magnitude compared to the Sun. Betelgeuse is a red supergiant star with a much larger luminosity, making it appear brighter despite its greater distance from Earth.
The apparent magnitude is how bright the star appears to us, but stars are all at different distances so that a star that is really bright might look dim because it is very far away. So the absolute magnitude measures how bright the star would look if it was placed at a standard distance of 10 parsecs. When the absolute magnitude is greater than the apparent magnitude, it just means that it is closer than 10 pc. The brightest stars have absolute magnitudes around -7.
The apparent magnitude is how bright the star appears to us, but stars are all at different distances so that a star that is really bright might look dim because it is very far away. So the absolute magnitude measures how bright the star would look if it was placed at a standard distance of 10 parsecs. When the absolute magnitude is greater than the apparent magnitude, it just means that it is closer than 10 pc. The brightest stars have absolute magnitudes around -7.
The apparent magnitude is what we see, and this can be measured directly. The absolute magnitude must be calculated, mainly on the basis of (1) the apparent magnitude, and (2) the star's distance. So, to calculate the absolute magnitude, you must first know the star's distance.
No, which means that Rigel appears brighter.
A star's brightness is a function of its luminosity, or the amount of energy it produces per unit time. Vega must have a higher luminosity, meaning it fuses more material than Betelgeuse in a given period of time.
Anything that is not the measure of intrinsic brightness of a celestial object.
Does it mean that the star is a main sequesnce star? ( . Y . ) The above isn't true. A star can be a blue supergiant and be on the main sequence but still not be even visible to us, therefore the apparent and absolute magnitude wouldn't be the same. But to answer your question, I don't think it has a name, it just means that you are seeing the star's absolute and apparent magnitude at the same time, so if you placed the star at 32.6 light years away(the absolute magnitude scale)then the star would not appear to change in brightness
The star's absolute magnitude is a measure of its intrinsic brightness. Sirius appears brighter from Earth than a star with a greater absolute magnitude because Sirius is closer to us, which affects its apparent brightness. The star with the greater absolute magnitude might be intrinsically brighter but is much farther away, leading to its fainter appearance from Earth.
-2
Magnitude refers to the size of a mathematical object. The greater an object's volume, area, or length, the greater its magnitude. The magnitude of a number is referred to as its "absolute value."