The Hardy-Weinberg principle states that both allele and genotype frequencies in a population remain constant-that is, they are in equilibrium-from generation to generation unless specific disturbing influences are introduced. In practice, however, it is impossible to remove such disturbing influences thus making this principle purely theoretical.
Hardy-Weinberg Principle.
The evolutionary influences present in the Hardyâ??Weinberg principle are mate choice, mutation, selection, genetic drift, gene flow and meiotic drive.
No statements, but a few of the Hardy-Weinberg conditions. Random mating. No gene flow. No natural selection.
p is the value of an allele frequency.
According to the Hardy-Weinberg principle, the frequency of alleles in a population will remain constant from generation to generation as long as equilibrium is maintained through random mating, no gene flow, no genetic drift, no natural selection, and no mutations.
One condition that must exist before the Hardy-Weinberg principle can be applied is a large population size to prevent genetic drift from significantly affecting allele frequencies.
Genetic equilibrium is a theoretical concept used to study the dymamics of single alleles in the population gene pool. In practice, there is no situation in which allele frequencies do not drift to some degree. Large populations may slow drift down, but there will still be drift.
Hardy and Weinberg wanted to answer the question of how genetic variation is maintained in a population over time. They developed the Hardy-Weinberg equilibrium principle, which describes the expected frequencies of alleles in a population that is not undergoing any evolutionary changes.
allele frequencies
allele frequencies
The Hardy-Weinberg principle posits that in the absence of outside evolutionary forces, a population's alleles and genotype frequencies will remain constant. Biologists use this principle as the standard against which to test outside evolutionary forces on a population.
The Hardy Weinberg Principle states that a trait that is neither selected for or against will remain at the same frequency in the population. Therefore, traits in a population that are neither selected for or against are in equillibrium and remain in the population at a steady state.