answersLogoWhite

0


Best Answer

The enzymes ability to stretch reactants and move them towards a transition state

User Avatar

Șhėh Żåða

Lvl 2
2mo ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

14y ago

the ability of an enzyme to form a template for holding and joining molecules

Source mastering Biology

This answer is:
User Avatar

User Avatar

Wiki User

14y ago

The competitive inhibitor competes with the substrate for the enzyme's active site.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Competitive inhibitors block the entry of substrate into the active site of an enzyme On what properties of an active site does this primarily depend?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Biology

What does a competitive inhibitor bind to?

A competitive inhibitor is a molecule that binds to the active site of an enzyme, to prevent substrates entering the active site and therefore lowering the rate of reaction. Some drugs act as competitive inhibitors to control reactions in the body, and the body also releases competitive inhibitors as a means of self control. But remember that the amount of product formed is still remain the same, only the time taken increased.


Increasing the substrate concentration in an enzymatic reaction could overcome what?

competitive inhibition


What are three factors that increase the rates of enzyme-controlled reactions?

Presence of:Competitive inhibitorsNon-competitive inhibitorsAllosteric sitesNegative feedback inhibitionIncrease/decrease of enzyme/substrateCooperativity


What inhibitor has a structure that is so similar to the substrate that it can bond to the enzyme just like the substrate?

Competitive inhibitor. It is termed to be an analogue. It is also known to sometimes act as a "catalytic poison".


Describe the chemical compositions and configuration of enzymes and discuss the factors that modify enzymes structure and function?

Enzymes are composed of amino acids, and have different bonds such as a hydrogen bond which maintains the enzyme's shape. Factors such as temperature and pH have an effect upon the enzymes structure. Enzymes have slower rates of reaction when the temperature is below the enzymes optimum temperature. This is due to the fact that hydrogen bonds are stronger at lower temperatures meaning that the enzyme is less flexible and so, using the induced fit theory, this means that the substrate is less able to fit into the enzymes active site meaning less substrate is broken down therefore the rate of reaction is much less than it would be at the enzymes optimum temperature. When the temperature also exceeds the enzymes optimum temperature the rate of reaction is again slower that it would be at the optimum temperature, this is due to the high temperature causing the hydrogen bonds to be broken, meaning the enzyme can be denatured, and there is a point where the enzymes are unable to "renature" (when temp is returned to optimum) because too many hydrogen bonds would have been broken. pH is a factor which also affects the enzymes structure, by changing the pH from the enzymes optimum pH you are then causing there to be a change in the enzymes structure and molecular shape. pH can in turn strengthen or weaken the intermolecular forces like the hydrogen bonds. Competitive inhibitors can also alter the enzymes function. Competitive inhibitors have a molecular shape which is similar to the shape of the substrate; This means that they can occupy the enzymes active site meaning that they compete with the substrate for an available active site. The difference between the concentration of the competitive inhibitor and the substrate determines the effect upon the enzyme activity, if the competitive inhibitors concentration is highest the effect of the substrate is lessened. The inhibitor is not permenantly bound to the enzymes active site, so when it leaves another molecule may take its place, either another inhibitor or substrate. Sooner or later all of the substrate will occupy active sites of enzymes, but if the inhibitor concentration is higher this may take some time. Non-competitive inhibitors can also effect the enzyme activity by attaching themselves to the enzyme, but not at the active site. This attachment means the enzyme's active site may under-go a shape change meaning that the substrate may not fit into it, causing the effect of the enzyme to be lowered as less substrate can be broken down. Non-competitive inhibitors may be permanent. Hope this helps you, even if it is very slightly.

Related questions

What can effect how the enzyme and substrate come together?

Shape of substrate, shape of the enzyme, Competitive, noncompetitive and allosteric inhibitors.


Can enzyme reaction can be slowed or halted using inhibitors?

Yes, enzyme reactions can be slowed or halted using inhibitors. Inhibitors can bind to the enzyme and prevent it from binding to its substrate, thus inhibiting the reaction. There are different types of inhibitors, such as competitive inhibitors that compete with the substrate for binding to the enzyme, and non-competitive inhibitors that bind to a different site on the enzyme and alter its shape or function.


Competitive inhibitors and how they work?

Inhibitors are substances that alter the activity of enzymes by combining with them in a way that influence the binding of substrate and/or its turnover number. Many inhibitors are substances that structurally resemble their enzyme's substrate but either do not react or react very slowly compared to substrate.There are two kinds of inhibitors: a) competitive inhibitors (those compete directly with a normal substrate for an enzyme-binding site), and b) uncompetitive inhibitors (these bind directly to the enzyme-substrate complex but not to the free enzyme).


What blocks enzyme activity by binding to the active site of an enzyme?

Competitive inhibitors reduce enzyme activity by binding (in competition with the enzyme's substrate) to the active site. These inhibitors may be reversible or irreversible. With reversible inhibitors, which may release the enzyme, concentrations much higher than the concentration of the substrate would be required to completely block enzyme activity, and even then one or two reactions may take place over long periods of time. With irreversible inhibitors, which permanently attach to the enzyme, enzyme activity could be completely blocked when the amount of inhibitor matches the amount of enzyme. Competitive inhibition reduces the enzymes ability to bind substrate (so it lowers the KM) but does not alter the maximum rate (very high substrate concentrations would out compete for enzyme binding).Other types of inhibitors work in other ways. Non-competitive inhibitors bind to the enzyme on a site other than the active site. These too may be reversible or irreversible. Binding does not compete with substrate, so concentrations to completely block enzyme activity do not have to be as high as reversible competitive inhibitors. Non-competitive inhibition reduces the apparent maximum rate for the enzyme.Uncompetitive inhibitors bind only when the substrate is also bound to the enzyme (they bind to the enzyme-substrate complex). Both the maximum rate and substrate binding affinities appear lower.


What does a competitive inhibitor bind to?

A competitive inhibitor is a molecule that binds to the active site of an enzyme, to prevent substrates entering the active site and therefore lowering the rate of reaction. Some drugs act as competitive inhibitors to control reactions in the body, and the body also releases competitive inhibitors as a means of self control. But remember that the amount of product formed is still remain the same, only the time taken increased.


Why will increasing the substrate concentration not decrease the effect of a non competitive inhibitor?

Because you will still have the same number of enzymes inhibited. For example, you have 20 enzymes and 10 non-competitive inhibitors. Regardless of substrate concentration, at any one time, there will only be 10 enzymes available to accept a substrate. Increasing the substrate concentration does not affect this.


How do inhibitors regulate enzymes?

Competitive inhibition: Where an inhibitor, which has a similar molecular shape to the enzyme's substrate, competes with substrate to fit to the enzymes active site. In the end all substrate can be broken down because the competitive inhibitors are not permanently bonded to the enzymes active site. If there is a higher concentration of substrate the amount of time it will take for all the substrate to be broken down will be less than if there is a higher concentration of inhibitor. Non-competitive inhibition: Where the inhibitor attaches itself to the enzyme at a site which is NOT the active site. This causes the enzymes shape to be changed slightly which would mean that the substrate is unable to fit to the active site. Non-competitive inhibitors do no compete with the substrate for the active site, hence their name. Non-competitive inhibitors may be permanent or not. Because the inhibitor and substrate are not competing for the same site an incrase in substrate concentration does not decrease the inhibitors effect.


What does inhibitor do to enzyme activity?

AnswerWhat does inhibitor do to enzyme activity?They prevent the reactions from happening. Non-competative inhibitors alter the shape of the active site so that the substrate no longer fits, and competative inhibitors block the active site.


Why does adding additional substrate overcome competitive but not noncompetitive inhibition?

A competitive inhibitor competes with the substrate to bind to the active site while a noncompetitive inhibitor binds to an allosteric site of the enzyme (one other than the active site). Thus no amount of substrate can overcome or in a sense interfere with the inhibitors binding to an allosteric site.


How does a non-competitive activator affect enzyme activity?

Well, unlike competitive inhibitors the non-competitive inhibitors will not compete the active site of the enzyme with substrate . Instead, it will combine with the enzyme somewhere except the ative site and alter the whole shape of the enzymes therefore the active site of substrate and enzyme are not the same and therefore no enzyme-substrate complex can be formed and the enzymatic effect can't be restored becausr the enzymes are now denatured


Enzyme inhibitors disrupt normal interactions between an enzyme and its what?

substrate


Inhibitors of enzymes-catalyzed reactions act by?

Different Enzymes inhibit in different ways. Some are structural analogue of substrate and they compete the substrate in binding to the enzyme. Some inhibitors bind in the active site and prevent the binding of the enzyme. Some enzymes doesn't bind the active site but they change the active site properties that prevent the efficient binding of the substrate. some time substrate in large quantity may inhibit the enzyme, while other times the product formed may do so.