i think u got the same test that i allready passed the answer is : shape of the enzymes active site
substrate can fit into, due to complementary shapes and charges. This allows the enzyme to specifically catalyze a particular reaction. Any changes to the active site can impact the enzyme's ability to bind to its substrate and perform its function.
The molecule that is changed by an enzyme is called the substrate. Enzymes catalyze chemical reactions by binding to their specific substrate molecules and converting them into products. This process often involves the enzyme facilitating the breaking or forming of chemical bonds within the substrate molecule.
Allosteric inhibition occurs when a molecule binds to a site on the enzyme that is not the active site, causing a change in the enzyme's shape and reducing its activity. Noncompetitive inhibition, on the other hand, involves a molecule binding to the enzyme at a site other than the active site, but it does not change the enzyme's shape. This type of inhibition reduces the enzyme's activity by blocking the active site or altering the enzyme's ability to bind to the substrate.
An enzyme's specific shape allows it to bind with a substrate molecule, forming an enzyme-substrate complex. This interaction positions the substrate in a way that promotes the chemical reaction to occur more quickly and efficiently by lowering the activation energy required. The unique shape of the enzyme's active site is crucial for catalyzing the reaction with high specificity.
Enzymes act upon specific molecules called substrates. Each enzyme has a unique shape that allows it to bind to a specific substrate, facilitating a chemical reaction to occur. This specific binding of enzyme to substrate is key to the enzyme's ability to catalyze reactions in living organisms.
An enzyme is considered a substrate-specific catalyst because it is able to recognize and bind to a specific substrate molecule due to the complementary shape of their active sites. This specificity allows enzymes to efficiently catalyze chemical reactions by facilitating the formation of enzyme-substrate complexes.
The type of molecule that is an enzyme is a protein molecule.
substrate can fit into, due to complementary shapes and charges. This allows the enzyme to specifically catalyze a particular reaction. Any changes to the active site can impact the enzyme's ability to bind to its substrate and perform its function.
Because these enzymes cut the DNA molecule at a particular site. But like scissors these are useful tools in genetic engineering or recombinant DNA technology.
The three factors that can affect the observance of a particular enzyme in a test performance are temperature, pH, and presence of inhibitors or activators. Changes in these factors can impact the enzyme's activity and ability to catalyze reactions accurately.
When a regulatory molecule binds to an enzyme, it can cause a conformational change in the enzyme's active site, either activating or inhibiting its function. This change in shape can affect the enzyme's ability to bind substrate molecules and catalyze reactions. Regulatory molecules can help control enzyme activity in response to cellular signals or changes in the environment.
The molecule that is changed by an enzyme is called the substrate. Enzymes catalyze chemical reactions by binding to their specific substrate molecules and converting them into products. This process often involves the enzyme facilitating the breaking or forming of chemical bonds within the substrate molecule.
Is a molecule upon which an enzyme acts. e.g. hydrogen peroxide is the substrate for the enzyme catalase
the strarch molecule binds to an enzyme
Allosteric inhibition occurs when a molecule binds to a site on the enzyme that is not the active site, causing a change in the enzyme's shape and reducing its activity. Noncompetitive inhibition, on the other hand, involves a molecule binding to the enzyme at a site other than the active site, but it does not change the enzyme's shape. This type of inhibition reduces the enzyme's activity by blocking the active site or altering the enzyme's ability to bind to the substrate.
where your body didn't make a particular enzyme
it determines how the molecule functions