(From Wikipedia; slightly paraphrased to make it easier to understand.)
During the light-dependent stage of photosynthesis, one molecule of the pigment chlorophyll absorbs one photon (unit of light) and loses one electron. This electron is passed to a modified form of chlorophyll (called pheophytin), which passes the electron to a quinone molecule (another pigment), allowing the start of a flow of electrons down an "electron transport chain" that leads to the ultimate reduction of NADP+ to NADPH. In addition, this creates a "proton gradient" across the chloroplast membrane. Its dissipation is used at the same time by "ATP synthase" to make ATP from ADP. The chlorophyll molecule regains the lost electron from a water molecule through a process called photolysis, which releases an oxygen molecule (02).
The accumulation of protons occurs in the thylakoid space within the chloroplast during photosynthetic electron transport. This forms a proton gradient that drives ATP synthesis during the process of photophosphorylation.
The flow of electrons through the photosynthetic electron transport chain contributes directly to the creation of a proton gradient across the thylakoid membrane. As electrons move through the chain, they pump protons from the stroma into the thylakoid lumen, generating the proton gradient used for ATP production during photosynthesis.
Water is split in the light reactions of photosynthesis to provide electrons for the photosynthetic electron transport chain. This process releases oxygen as a byproduct. Additionally, water molecules help maintain the balance of protons and electrons within the thylakoid membrane during the light reactions.
Water molecules are split into oxygen, protons, and electrons when plants absorb light energy during photosynthesis. This process is known as photolysis and occurs in the thylakoid membranes of the chloroplasts. Oxygen is released as a byproduct, while the protons and electrons are used to produce ATP and NADPH for the Calvin cycle.
During photosynthesis, electrons from water molecules are used to replace the electrons that chlorophyll loses when it absorbs light energy. This process, known as the electron transport chain, involves a series of protein complexes that shuttle electrons and pump protons across the thylakoid membrane in the chloroplast. This generates a proton gradient that drives ATP synthesis, ultimately leading to the restoration of electrons to chlorophyll.
The accumulation of protons occurs in the thylakoid space within the chloroplast during photosynthetic electron transport. This forms a proton gradient that drives ATP synthesis during the process of photophosphorylation.
In photosystem II, water (H₂O) is the molecule that is split during the process of photolysis. This reaction produces oxygen (O₂), protons (H⁺), and electrons, which are essential for the photosynthetic process. The electrons generated from water are then transferred to the electron transport chain, ultimately contributing to the production of ATP and NADPH.
oxygen.
The electrons essential to the oxygen production process in photosynthesis are taken from water molecules during the light reaction in the thylakoid membrane of chloroplasts. When water is split, it releases protons, electrons, and oxygen as byproducts.
water
The splitting of water by the process of photolysis in photosystem II. There the electrons and protons are used in the process of photosynthesis but oxygen gas is a byproduct that diffuses out of the stomata into the atmosphere.
During the light reactions of photosynthesis, oxygen gas (O₂) is released as a byproduct. This occurs when water molecules are split (a process known as photolysis) to provide electrons for the photosynthetic process. The oxygen produced is then released into the atmosphere.
During ion formation, electrons are either gained or lost by an atom. When electrons are lost, a positively charged ion forms (cation), and when electrons are gained, a negatively charged ion forms (anion). This process balances the number of protons and electrons in the atom to achieve a stable electron configuration.
The process when protons and neutrons react during nuclear fusion is called nucleosynthesis. This is the process by which new atomic nuclei are formed from existing protons and neutrons.
The flow of electrons through the photosynthetic electron transport chain contributes directly to the creation of a proton gradient across the thylakoid membrane. As electrons move through the chain, they pump protons from the stroma into the thylakoid lumen, generating the proton gradient used for ATP production during photosynthesis.
The electrons used in the light-dependent reactions of photosynthesis come from water molecules (H₂O). When light energy is absorbed by chlorophyll in the thylakoid membranes of chloroplasts, it energizes electrons, which are then stripped from water molecules during a process called photolysis. This process not only releases oxygen as a byproduct but also provides the energized electrons needed to drive the subsequent reactions in the photosynthetic pathway.
Water is split in the light reactions of photosynthesis to provide electrons for the photosynthetic electron transport chain. This process releases oxygen as a byproduct. Additionally, water molecules help maintain the balance of protons and electrons within the thylakoid membrane during the light reactions.