In cell F, the structure labeled Y is the nuclear membrane. It is also referred to as the nuclear envelope.
In genetic studies, human sex chromosomes are labeled as X and Y.
In genetic studies, human sex chromosomes are labeled as X and Y. Females typically have two X chromosomes (XX), while males have one X and one Y chromosome (XY).
In genetic testing, human sex chromosomes are labeled as X and Y. They are identified by analyzing the presence or absence of these chromosomes in a person's genetic makeup. The combination of X and Y chromosomes determines an individual's biological sex.
In a two-axis system, each point has coordinates that specify its position in relation to the two axes. The horizontal axis is typically labeled x, and the vertical axis is labeled y. The coordinates of a point are written as (x, y).
Human somatic (body) cells contain two sets of 23 chromosomes. Human gametes (sperm and egg cells) contain one set of 23 chromomes -- 22 autosomes and 1 sex chromosome. Only a sperm cell can carry a y chromosome. A sperm cell can also carry an x chromosome. The ovum can carry only an x chromosome, never a y chromosome. So a cell containing 22 autosomes and a y chromosome must be a sperm cell.
The y-axis
PIERRE DE FERMAT's last Theorem. (x,y,z,n) belong ( N+ )^4.. n>2. (a) belong Z F is function of ( a.) F(a)=[a(a+1)/2]^2 F(0)=0 and F(-1)=0. Consider two equations F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) We have a string inference F(z)=F(x)+F(y) equivalent F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) infer F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) infer F(z-x-2)=F(x-x-2)+F(y-x-2) we see F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) give z=y and F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) give z=/=y. So F(z-x-1)=F(x-x-1)+F(y-x-1) don't infer F(z-x-2)=F(x-x-2)+F(y-x-2) So F(z)=F(x)+F(y) don't infer F(z-1)=F(x-1)+F(y-1) So F(z)=F(x)+F(y) is not equivalent F(z-1)=F(x-1)+F(y-1) So have two cases. [F(x)+F(y)] = F(z) and F(x-1)+F(y-1)]=/=F(z-1) or vice versa So [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). Or F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). We have F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. So x^3+y^3=/=z^3. n>2. .Similar. We have a string inference G(z)*F(z)=G(x)*F(x)+G(y)*F(y) equivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) we see G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) give z=y. and G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 infer G(x)>0. give z=/=y. So G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) don't infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) don't infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) is not equiivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So have two cases [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) and [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) or vice versa. So [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. Or G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] We have x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] So x^n+y^n=/=z^n Happy&Peace. Trần Tấn Cường.
Последнее Пьер де Ферма теоремы. (x,y,z,n) принадлежать( N+ )^4. n>2. (a) принадлежать Z F является функцией( a.) F(a)=[a(a+1)/2]^2 F(0)=0 и F(-1)=0. Рассмотрим два уравнения F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) непрерывный дедуктивного рассуждения F(z)=F(x)+F(y) эквивалент F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) выводить F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) выводить F(z-x-2)=F(x-x-2)+F(y-x-2) мы видим, F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) давать z=y и F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) давать z=/=y. так F(z-x-1)=F(x-x-1)+F(y-x-1) не выводить F(z-x-2)=F(x-x-2)+F(y-x-2) так F(z)=F(x)+F(y) не выводить F(z-1)=F(x-1)+F(y-1) так F(z)=F(x)+F(y) не эквивалентен F(z-1)=F(x-1)+F(y-1) Таким образом, возможны два случая. [F(x)+F(y)] = F(z) и F(x-1)+F(y-1)]=/=F(z-1) или наоборот так [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). или F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). у нас есть F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. так x^3+y^3=/=z^3. n>2. аналогичный непрерывный дедуктивного рассуждения G(z)*F(z)=G(x)*F(x)+G(y)*F(y) эквивалент G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) выводить G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) выводить G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) мы видим, G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) давать z=y. и G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 выводить G(x)>0. давать z=/=y. так G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y)не выводить G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) так G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не выводить G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) так G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не эквивалентен G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) Таким образом, возможны два случая. [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) и [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) или наоборот. так [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. или G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] у нас есть x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] так x^n+y^n=/=z^n Счастливые и мира. Trần Tấn Cường.
To: trantancuong21@yahoo.com PIERRE DE FERMAT's last Theorem. (x,y,z,n) belong ( N+ )^4.. n>2. (a) belong Z F is function of ( a.) F(a)=[a(a+1)/2]^2 F(0)=0 and F(-1)=0. Consider two equations F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) We have a string inference F(z)=F(x)+F(y) equivalent F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) infer F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) infer F(z-x-2)=F(x-x-2)+F(y-x-2) we see F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) give z=y and F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) give z=/=y. So F(z-x-1)=F(x-x-1)+F(y-x-1) don't infer F(z-x-2)=F(x-x-2)+F(y-x-2) So F(z)=F(x)+F(y) don't infer F(z-1)=F(x-1)+F(y-1) So F(z)=F(x)+F(y) is not equivalent F(z-1)=F(x-1)+F(y-1) So have two cases. [F(x)+F(y)] = F(z) and F(x-1)+F(y-1)]=/=F(z-1) or vice versa So [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). Or F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). We have F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. So x^3+y^3=/=z^3. n>2. .Similar. We have a string inference G(z)*F(z)=G(x)*F(x)+G(y)*F(y) equivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) we see G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) give z=y. and G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 infer G(x)>0. give z=/=y. So G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) don't infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) don't infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) is not equiivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So have two cases [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) and [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) or vice versa. So [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. Or G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] We have x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] So x^n+y^n=/=z^n Happy&Peace. Trần Tấn Cường.
The structure that contains an egg cell is called an ovary. It is a female reproductive organ where egg cells are produced and stored until they are released during ovulation.
To: trantancuong21@yahoo.com Последнее Пьер де Ферма теоремы. . (x,y,z,n) принадлежать( N+ )^4.. n>2. (a) принадлежать Z F является функцией( a.) F(a)=[a(a+1)/2]^2 F(0)=0 и F(-1)=0. Рассмотрим два уравнения F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) непрерывный дедуктивного рассуждения F(z)=F(x)+F(y) эквивалент F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) выводить F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) выводить F(z-x-2)=F(x-x-2)+F(y-x-2) мы видим, F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) давать z=y и F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) давать z=/=y. так F(z-x-1)=F(x-x-1)+F(y-x-1) не выводить F(z-x-2)=F(x-x-2)+F(y-x-2) так F(z)=F(x)+F(y) не выводить F(z-1)=F(x-1)+F(y-1) так F(z)=F(x)+F(y) не эквивалентен F(z-1)=F(x-1)+F(y-1) Таким образом, возможны два случая. [F(x)+F(y)] = F(z) и F(x-1)+F(y-1)]=/=F(z-1) или наоборот так [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). или F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). у нас есть F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. так x^3+y^3=/=z^3. n>2. аналогичный непрерывный дедуктивного рассуждения G(z)*F(z)=G(x)*F(x)+G(y)*F(y) эквивалент G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) выводить G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) выводить G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) мы видим, G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) давать z=y. и G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 выводить G(x)>0. давать z=/=y. так G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y)не выводить G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) так G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не выводить G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) так G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не эквивалентен G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) Таким образом, возможны два случая. [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) и [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) или наоборот. так [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. или G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] у нас есть x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] так x^n+y^n=/=z^n Счастливые и мира. Trần Tấn Cường.
Địng lý cuối của PIERRE DE FERMAT. (x,y,z,n) thuộc tập hợp ( N+ )^4.. n>2. (a) thuộc tập hợp Z F là hàm số của ( a.) F(a)=[a(a+1)/2]^2 F(0)=0 и F(-1)=0. Xét hai phương trình F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) Ta có một dãy suy luận F(z)=F(x)+F(y) tương đương F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) suy ra F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) suy ra F(z-x-2)=F(x-x-2)+F(y-x-2) ta có F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) cho z=y và F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) cho z=/=y. do đó F(z-x-1)=F(x-x-1)+F(y-x-1) không suy raF(z-x-2)=F(x-x-2)+F(y-x-2) do đó F(z)=F(x)+F(y) không suy ra F(z-1)=F(x-1)+F(y-1) do đó F(z)=F(x)+F(y) không tương đương F(z-1)=F(x-1)+F(y-1) điều có thể xảy ra [F(x)+F(y)] = F(z) и F(x-1)+F(y-1)]=/=F(z-1) hay ngược lại [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). hoặc F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). ta có F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. do đó x^3+y^3=/=z^3. n>2.tương tự Ta có một dãy suy luận F(z)=G(x)*F(x)+G(y)*F(y) tương đương G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) suy ra G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) suy ra G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) ta có G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) cho z=y. và G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 do đó G(x)>0. cho z=/=y. do đó G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y)не выводить G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) do đó G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не выводить G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) do đó G(z)*F(z)=G(x)*F(x)+G(y)*F(y) не эквивалентен G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) điều có thể xảy ra [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) и [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) hay ngược lại do đó [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. hay G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] ta có x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] do đó x^n+y^n=/=z^n Hòa Bình. Trần Tấn Cường.
Pierre de Fermat's laatste stelling (x, y, z, n) element van de (N +) ^ 4 n> 2 (a) element van de Z F is de functie (s). F (a) = [a (a +1) / 2] ^ 2 F (0) = 0 en F (-1) = 0 Beschouw twee vergelijkingen. F (z) = F (x) + F (y) F (z-1) = F (x-1) + F (y-1) We hebben een keten van gevolgtrekking F (z) = F (x) + F (y) gelijkwaardig F (z-1) = F (x-1) + F (y-1) F (z) = F (x) + F (y) conclusie F (z-1) = F (x-1) + F (y-1) F (z-x-1) = F (x-x-1) + F (y-x-1) conclusie F (z-x-2) = F (x-x-2) + F (y-x-2) zien we F (z-x-1) = F (x-x-1) + F (y-x-1) F (z-x-1) = F (-1) + F (y-x-1) F (z-x-1) = 0 + F (y-x-1) conclusie z = y en F (z-x-2) = F (x-x-2) + F (y-x-2) F (z-x-2) = F (-2) + F (y-x-2) F (z-x-2) = 1 + F (y-x-2) conclusie z = / = y. conclusie F (z-x-1) = F (x-x-1) + F (y-x-1) geen conclusie (z-x-2) = F (x-x 2) + F (y-x-2) conclusie F (z) = F (x) + F (y) geen conclusie F (z-1) = F (x-1) + F (y-1) conclusie F (z) = F (x) + F (y) zijn niet equivalent van F (z-1) = F (x-1) + F (y-1) Daarom is de twee gevallen. [F (x) + F (y)] = F (z) en F (x-1) + F (y-1)] = / = F (Z-1) of vice versa conclusie [F (x) + F (y)] - [F (x-1) + F (y-1)] = / = F (z) - F (z-1). of F (x) - F (x-1) + F (y)-F (y-1) = / = F (z) - F (z-1). zien we F (x) - F (x-1) = [x (x 1) / 2] ^ 2 - [(x-1) x / 2] ^ 2 = (X ^ 4 +2 x ^ 3 + x ^ 2/4) - (x ^ 4-2x 3 + x ^ ^ 2/4). = X ^ 3 F (y)-F (y-1) = y ^ 3 F (z)-F (z-1) = z ^ 3 conclusie x 3 + y ^ 3 = / = z ^ 3 n> 2. lossen soortgelijke We hebben een keten van gevolgtrekking G (z) * F (z) = G (x) * F (x) + G (y) * F (y) gelijkwaardig G (z) * F (z-1) = G (x) * F ( x -1) + G (y) * F (y-1) G (z) * F (z) = G (x) * F (x) + G (y) * F (y) conclusie G (z) * F (z-1) = G (x) * F (x -1) + G (y) * F (y-1) G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y-x-1) * F (y) conclusie G (z) * F (z-x-2) = G ( x) * F (x-x 2) + G (y) * F (y-x 2) zien we G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y) * F (y-x-1) G (z) * F (z-x-1) = G (x) * F (-1) + G (y) * F (y-x-1) G (z) * F (z-x-1) = 0 + G (y) * F (y-x-1) conclusie z = y. en G (z) * F (z-x-2) = G (x) * F (x-x-2) + G (y) * F (y-x-2) G (z) * F (z-x-2) = G (x) * F (-2) + G (y) * F (y-x-2) G (z) * F (z-x-2) = G (x) + G (y) * F (x-y-2) x> 0 conclusie G (x)> 0 conclusie z = / = y. conclusie G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y-x-1) * F (y) geen conclusie G (z) * F (z-x-2) = G (x) * F (x-x-2) + G (y) * F (y-x-2) conclusie G (z) * F (z) = G (x) * F (x) + G (y) * F (y) geen conclusie G (z) * F (z-1) = G (x) * F ( x-1) + G (y) * F (y-1) conclusie G (z) * F (z) = G (x) * F (x) + G (y) * F (y) zijn niet equivalent van G (z) * F (z-1) = G (x) * F (x-1) + G (y) * F (y-1) Daarom is de twee gevallen. [G (x) * F (x) + G (y) * F (y)] = G (z) * F (z) en [G (x) * F (x-1) + G (y) * F (y-1)] = / = G (z-1) * F (z-1) of vice versa conclusie [G (x) * F (x) + G (y) * F (y)] - [G (x) * F (x-1) + G (y) * F (y-1)] = / = G (z) * [F (z) -F(Z-1)]. of G (x) * [F (x) - F (x-1)] + G (y) * [F (y) - F (y-1)] = / = G (z) * [F (z) - F(z-1)] zien we x ^ n = G (x) * [F (x) - F (x-1)] y ^ n = G (y) * [F (y) - F (y-1)] z ^ n = G (z) * [F (z) - F (z-1)] conclusie x ^ n + y ^ n = / = z ^ n gelukkig en vrede Tran tan Cuong .
ultimo teorema di Pierre De Fermat (x,y,z, n) elemento della (N +)^ 4 n> 2 (a) elemento della Z F è la funzione (a). F (a) = [a(a +1) / 2] ^2 F (0) = 0 e F (-1) = 0 Si considerino due equazioni. F (z) = F (x) + F (y) F (z-1) = F (x-1) + F (y-1) Abbiamo una catena di inferenza F (z) = F (x) + F (y) equivalente F (z-1) = F (x-1) + F (y-1) F (z) = F (x) + F (y) conclusione F (z-1) = F (x-1) + F (y-1) F (z-x-1) = F (x-x-1) + F (y-x-1) conclusione F (z-x-2) = F (x-x-2) + F (y-x-2) vediamo F (z-x-1) = F (x-x-1) + F (y-x-1) F (z-x-1) = F (-1) + F (y-x-1) F (z-x-1) = 0 + F (y-x-1) conclusione z = y e F (z-x-2) = F (x-x-2) + F (y-x-2) F (z-x-2) = F (-2) + F (y-x-2) F (z-x-2) = 1 + F (y-x-2) conclusione z = / = y. conclusione F (z-x-1) = F (x-x-1) + F (y-x-1) alcuna conclusione (z-x-2) = F (x-x 2) + F (y-x-2) conclusione F (z) = F (x) + F (y) alcuna conclusione F (z-1) = F (x-1) + F (y-1) conclusione F (z) = F (x) + F (y) non sono equivalenti di F (z-1) = F (x-1) + F (y-1) Pertanto, i due casi. [F (x) + F (y)] = F (z) e F (x-1) + F (y-1)] = / = F (Z-1) o viceversa conclusione [F (x) + F (y)] - [F (x-1) + F (y-1)] = / = F (z)- F (z-1). Or. F (x)- F (x-1) + F (y) -F (y-1) = / = F (z)- F (z-1). vediamo F (x)- F (x-1) = [x (x 1) / 2] ^ 2 - [(x-1) x / 2] ^2 = (X ^ 4 +2 x ^ 3 + x ^ 2/4) - (x ^ 4-2x ^ 3 + x ^ 2/4). = X ^ 3 F (y) -F (y-1) = y ^ 3 F (z) -F (z-1) = z ^ 3 conclusione x 3 + y ^ 3 =/= z^ 3 n> 2. risolvere simili Abbiamo una catena di inferenza G (z) * F (z) = G (x) * F (x) + G (y) * F (y) equivalenti di G (z) * F (z-1) = G (x) * F ( x -1) + G (y) * F (y-1) G (z) * F (z) = G (x) * F (x) + G (y) * F (y) conclusione G (z) * F (z-1) = G (x) * F (x -1) + G (y) * F (y-1) G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y-x-1) * F (y) conclusione G (z) * F (z-x-2) = G ( x) * F (x-x 2) + G (y) * F (y-x 2) vediamo G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y) * F (y-x-1) G (z) * F (z-x-1) = G (x) * F (-1) + G (y) * F (y-x-1) G (z) * F (z-x-1) = 0 + G (y) * F (y-x-1) conclusione z = y. e G (z) * F (z-x-2) = G (x) * F (x-x-2) + G (y) * F (y-x-2) G (z) * F (z-x-2) = G (x) * F (-2) + G (y) * F (y-x-2) G (z) * F (z-x-2) = G (x) + G (y) * F (x-y-2) x> 0 conclusioni G (x)> 0 conclusione z = / = y. conclusione G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y-x-1) * F (y) alcuna conclusione G (z) * F (z-x-2) = G (x) * F (x-x-2) + G (y) * F (y-x-2) conclusione G (z) * F (z) = G (x) * F (x) + G (y) * F (y) alcuna conclusione G (z) * F (z-1) = G (x) * F ( x-1) + G (y) * F (y-1) conclusione G (z) * F (z) = G (x) * F (x) + G (y) * F (y) non sono equivalenti di G (z) * F (z-1) = G (x) * F ( x-1) + G (y) * F (y-1) Pertanto, i due casi. [G (x) * F (x) + G (y) * F (y)] = G (z) * F (z) e [G (x) * F (x-1) + G (y) * F (y-1)] = / = G (z-1) * F (z-1) o viceversa conclusione [G (x) * F (x) + G (y) * F (y)] - [G (x) * F (x-1) + G (y) * F (y-1)] = / = G (z) * [F (z)- F(Z-1)]. o G (x) * [F (x) - F (x-1)] + G (y) * [F (y)- F (y-1)] = / = G (z) * [F (z)- F(z-1).] vediamo x^ n = G (x) * [F (x)- F (x-1)] y ^ n = G (y) * [F (y)- F (y-1)] z ^ n = G (z) * [F (z)- F (z-1)] conclusione x ^ n + y ^ n = / = z ^ n Felicità e la pace Cuong Tran
assuming that you are referring to a function: f(y) = y×y or better put: f(y) = y2 Then it's derivative would be: f'(y) = 2y
Le dernier théorème de Pierre de Fermat . (x, y, z, n) l'ensemble de ( N+ )^4. n> 2. ( a ) l'ensemble de Z F est la fonction de (a). F (a) = [a (a +1) / 2] ^ 2 F (0) = 0 et F (-1) = 0. Considérons deux équations. F (z) = F (x) + F (y) F (z-1) = F (x-1) + F (y-1) Nous avons une inférence chaîne F (z) = F (x) + F (y) équivalent F (z-1) = F (x-1) + F (y-1) F (z) = F (x) + F (y) en déduire F (z-1) = F (x-1) + F (y-1) F (z-x-1) = F (x-x-1) + F (y-x-1) en déduire F (z-x-2) = F (x-x-2) + F (y-x-2) nous voyons F (z-x-1) = F (x-x-1) + F (y-x-1) F (z-x-1) = F (-1) + F (y-x-1) F (z-x-1) = 0 + F (y-x-1) donner z = y et F (z-x-2) = F (x-x-2) + F (y-x-2) F (z-x-2) = F (-2) + F (y-x-2) F (z-x-2) = 1 + F (y-x-2) donner z = / = y. de sorte F (z-x-1) = F (x-x-1) + F (y-x-1) ne pas en déduire F (z-x-2) = F (x-x-2) + F (y-x-2) de sorte F (z) = F (x) + F (y) ne pas en déduire F (z-1) = F (x-1) + F (y-1) de sorte F (z) = F (x) + F (y) n'est pas équivalente F (z-1) = F (x-1) + F (y-1) Donc avoir deux cas. [F (x) + F (y)] = F (z) et F (x-1) + F (y-1)] = / = F (z-1) ou vice versa de sorte [F (x) + F (y)] - [F (x-1) + F (y-1)] = / = F (z)-F (z-1). Ou F (x)-F (x-1) + F (y)-F (y-1) = / = F (z)-F (z-1). nous voyons F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. de sorte x 3 + y ^3 =/= z ^ 3. n> 2. . Similaire. Nous avons une inférence chaîne G (z) * F (z) = G (x) * F (x) + G (y) * F (y) équivalente G (z) * F (z-1) = G (x) * F (x -1) + G (y) * F (y-1) G (z) * F (z) = G (x) * F (x) + G (y) * F (y) en déduire G (z) * F (z-1) = G (x) * F (x -1) + G (y) * F (y-1) G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y-x-1) * F (y) en déduire G (z) * F (z-x-2) = G ( x) * F (x-x-2) + G (y) * F (y-x-2) nous voyons G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y) * F (y-x-1) G (z) * F (z-x-1) = G (x) * F (-1) + G (y) * F (y-x-1) G (z) * F (z-x-1) = 0 + G (y) * F (y-x-1) donner z = y. et G (z) * F (z-x-2) = G (x) * F (x-x-2) + G (y) * F (y-x-2) G (z) * F (z-x-2) = G (x) * F (-2) + G (y) * F (y-x-2) G (z) * F (z-x-2) = G (x) + G (y) * F (y-x-2) x> 0 en déduire G (x)> 0. donner z = / = y. de sorte G (z) * F (zx-1) = G (x) * F (xx-1) + G (yx-1) * F (y) ne pas en déduire G (z) * F (z-x-2) = G (x) * F (x-x-2) + G (y) * F (y-x-2) de sorte G (z) * F (z) = G (x) * F (x) + G (y) * F (y) ne pas en déduire G (z) * F (z-1) = G (x) * F (x-1) + G (y) * F (y-1) de sorte G (z) * F (z) = G (x) * F (x) + G (y) * F (y) n'est pas équivalente G (z) * F (z-1) = G (x) * F (x-1) + G (y) * F (y-1) Donc avoir deux cas [G (x) * F (x) + G (y) * F (y)] = G (z) * F (z) et [G (x) * F (x-1) + G (y) * F (y-1)] = / = G (z-1) * F (z-1) ou vice versa. de sorte [G (x) * F (x) + G (y) * F (y)] - [G (x) * F (x-1) + G (y) * F (y-1)] = / = G (z) * [F (z)-F (z-1)]. Ou G (x) * [F (x) - F (x-1)] + G (y) * [F (y)-F (y-1)] = / = G (z) * [F (z) -F (z-1).] nous voyons x ^ n = G (x) * [F (x)-F (x-1)] y ^ n = G (y) * [F (y)-F (y-1)] z ^ n = G (z) * [F (z)-F (z-1)] de sorte x ^ n + y ^ n = / = z ^ n Le bonheur et la paix Tran Tan Cuong
To: trantancuong21@yahoo.com Le dernier théorème de Pierre de Fermat . (x, y, z, n) l'ensemble de ( N+ )^4. n> 2. ( a ) l'ensemble de Z F est la fonction de (a). F (a) = [a (a +1) / 2] ^ 2 F (0) = 0 et F (-1) = 0. Considérons deux équations. F (z) = F (x) + F (y) F (z-1) = F (x-1) + F (y-1) Nous avons une inférence chaîne F (z) = F (x) + F (y) équivalent F (z-1) = F (x-1) + F (y-1) F (z) = F (x) + F (y) en déduire F (z-1) = F (x-1) + F (y-1) F (z-x-1) = F (x-x-1) + F (y-x-1) en déduire F (z-x-2) = F (x-x-2) + F (y-x-2) nous voyons F (z-x-1) = F (x-x-1) + F (y-x-1) F (z-x-1) = F (-1) + F (y-x-1) F (z-x-1) = 0 + F (y-x-1) donner z = y et F (z-x-2) = F (x-x-2) + F (y-x-2) F (z-x-2) = F (-2) + F (y-x-2) F (z-x-2) = 1 + F (y-x-2) donner z = / = y. de sorte F (z-x-1) = F (x-x-1) + F (y-x-1) ne pas en déduire F (z-x-2) = F (x-x-2) + F (y-x-2) de sorte F (z) = F (x) + F (y) ne pas en déduire F (z-1) = F (x-1) + F (y-1) de sorte F (z) = F (x) + F (y) n'est pas équivalente F (z-1) = F (x-1) + F (y-1) Donc avoir deux cas. [F (x) + F (y)] = F (z) et F (x-1) + F (y-1)] = / = F (z-1) ou vice versa de sorte [F (x) + F (y)] - [F (x-1) + F (y-1)] = / = F (z)-F (z-1). Ou F (x)-F (x-1) + F (y)-F (y-1) = / = F (z)-F (z-1). nous voyons F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. de sorte x 3 + y ^3 =/= z ^ 3. n> 2. . Similaire. Nous avons une inférence chaîne G (z) * F (z) = G (x) * F (x) + G (y) * F (y) équivalente G (z) * F (z-1) = G (x) * F (x -1) + G (y) * F (y-1) G (z) * F (z) = G (x) * F (x) + G (y) * F (y) en déduire G (z) * F (z-1) = G (x) * F (x -1) + G (y) * F (y-1) G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y-x-1) * F (y) en déduire G (z) * F (z-x-2) = G ( x) * F (x-x-2) + G (y) * F (y-x-2) nous voyons G (z) * F (z-x-1) = G (x) * F (x-x-1) + G (y) * F (y-x-1) G (z) * F (z-x-1) = G (x) * F (-1) + G (y) * F (y-x-1) G (z) * F (z-x-1) = 0 + G (y) * F (y-x-1) donner z = y. et G (z) * F (z-x-2) = G (x) * F (x-x-2) + G (y) * F (y-x-2) G (z) * F (z-x-2) = G (x) * F (-2) + G (y) * F (y-x-2) G (z) * F (z-x-2) = G (x) + G (y) * F (y-x-2) x> 0 en déduire G (x)> 0. donner z = / = y. de sorte G (z) * F (zx-1) = G (x) * F (xx-1) + G (yx-1) * F (y) ne pas en déduire G (z) * F (z-x-2) = G (x) * F (x-x-2) + G (y) * F (y-x-2) de sorte G (z) * F (z) = G (x) * F (x) + G (y) * F (y) ne pas en déduire G (z) * F (z-1) = G (x) * F (x-1) + G (y) * F (y-1) de sorte G (z) * F (z) = G (x) * F (x) + G (y) * F (y) n'est pas équivalente G (z) * F (z-1) = G (x) * F (x-1) + G (y) * F (y-1) Donc avoir deux cas [G (x) * F (x) + G (y) * F (y)] = G (z) * F (z) et [G (x) * F (x-1) + G (y) * F (y-1)] = / = G (z-1) * F (z-1) ou vice versa. de sorte [G (x) * F (x) + G (y) * F (y)] - [G (x) * F (x-1) + G (y) * F (y-1)] = / = G (z) * [F (z)-F (z-1)]. Ou G (x) * [F (x) - F (x-1)] + G (y) * [F (y)-F (y-1)] = / = G (z) * [F (z) -F (z-1).] nous voyons x ^ n = G (x) * [F (x)-F (x-1)] y ^ n = G (y) * [F (y)-F (y-1)] z ^ n = G (z) * [F (z)-F (z-1)] de sorte x ^ n + y ^ n = / = z ^ n Le bonheur et la paix Tran Tan Cuong