correct answer is phylogenetic
Scientists rely primarily on genetic data, particularly DNA sequences, to determine evolutionary history. By comparing the genetic similarities and differences between different species, scientists can infer relationships and construct evolutionary trees. This approach is known as molecular phylogenetics.
To build a cladogram showing evolutionary relationships among species, scientists can analyze morphological traits (physical characteristics) and genetic data. By comparing similarities and differences in these traits and genetic sequences, scientists can determine how closely related species are and create a visual representation of their evolutionary history.
Cladograms are diagrams that show the evolutionary relationships among species based on shared characteristics. They use branching patterns to illustrate how species are related to each other through common ancestors. By analyzing the similarities and differences in traits, scientists can construct cladograms to depict the evolutionary history of different species.
Identifying ortholog proteins in evolutionary studies is significant because it helps researchers understand the evolutionary relationships between different species. Orthologs are proteins that have a common ancestor and perform similar functions in different species. By studying orthologs, scientists can trace the evolution of these proteins and gain insights into the evolutionary history and relationships between species.
The function of an orthologous protein is to perform similar roles in different species, indicating a shared evolutionary history. This helps scientists understand how genes and proteins have evolved and how they contribute to the diversity of life on Earth.
I dunnooo :S
they are classified more closely together
The evolutionary history of a species is often displayed in a phylogenetic tree. This will clearly show the history of the species, which is also known as phylogeny.
Scientists rely primarily on genetic data, particularly DNA sequences, to determine evolutionary history. By comparing the genetic similarities and differences between different species, scientists can infer relationships and construct evolutionary trees. This approach is known as molecular phylogenetics.
Scientists group species on an evolutionary tree based on their shared ancestral relationships. By comparing morphological features, genetic sequences, and other characteristics, they can determine how different species are related to each other and construct a branching diagram that represents the evolutionary history of those species.
To build a cladogram showing evolutionary relationships among species, scientists can analyze morphological traits (physical characteristics) and genetic data. By comparing similarities and differences in these traits and genetic sequences, scientists can determine how closely related species are and create a visual representation of their evolutionary history.
Comparative anatomy is the investigation and comparison of the structures of different animals. Scientists use comparative anatomy to study the difference between species and how they are alike in other ways. By comparing the similarities and differences between a number of species, scientists can then construct a picture of their evolutionary relationships.
Phylogeny.
Cladograms are diagrams that show the evolutionary relationships among species based on shared characteristics. They use branching patterns to illustrate how species are related to each other through common ancestors. By analyzing the similarities and differences in traits, scientists can construct cladograms to depict the evolutionary history of different species.
what are the species to be included in the reconstruction of the evolutionary history of Polytoma and why?
They use a taxonomic map to help classify organisms. The placement of organisms on this was originally based on similarities between species. Today we are able to look at their actual genes, which has resulted in a better understanding of evolutionary relationships - or the lack of them- and has resulted in some re-classification.
One very important way that information is compared in the evolutionary history of a species is to use DNA. By checking how much is the same between species, we can see if those species are closely related or not. Our own DNA and that of the great apes are only different in about 1-2%.