When a population of bacteria is bombarded with antibiotics, the 'weak' ones will die. The ones with some resistance built in will survive, and divide to form a new population of copies of themselves, or a resistant population. This in itself is survival of the fittest in a very pure form.
An example of micro-evolution is the development of antibiotic resistance in bacteria due to natural selection. When exposed to antibiotics, bacteria with genetic mutations that provide resistance to the drug survive and reproduce, passing on the resistant trait to future generations. Over time, the proportion of resistant bacteria in the population increases, leading to the evolution of antibiotic-resistant strains.
Evolution is the process by which living organisms change and adapt over time through natural selection. An example of evolution is the development of antibiotic resistance in bacteria. When exposed to antibiotics, only the bacteria with genetic mutations that make them resistant survive and reproduce, leading to a population of bacteria that is mostly resistant to the antibiotic.
You are an example of human micro-evolution as the population of humans has changed allele frequency over time. Micro-evolution is just evolution; change over time.
Evolution of certain bacteria can lead to antibiotic resistance, making infections harder to treat. Additionally, evolution of pests can result in decreased crop yields and food shortages, impacting human food supply.
Plasmids contain antibiotic resistance genes because these genes provide a survival advantage to the bacteria in the presence of antibiotics. Bacteria can pick up plasmids with antibiotic resistance genes through horizontal gene transfer, allowing them to survive in environments with antibiotic exposure. This is a common mechanism for bacteria to acquire resistance traits and poses a challenge for antibiotic treatment.
All of the above examples are direct evidence for evolution. Genetic changes in plants, antibiotic resistance in bacteria, and pesticide resistance in insects all demonstrate how species can adapt and evolve to survive in changing environments. This supports the theory of evolution by natural selection.
An example of microevolution in organisms is the development of antibiotic resistance in bacteria. Through repeated exposure to antibiotics, bacteria may develop genetic mutations that confer resistance to the drug, allowing those bacteria to survive and reproduce, leading to the evolution of a population that is no longer susceptible to the antibiotic.
An example of micro-evolution is the development of antibiotic resistance in bacteria due to natural selection. When exposed to antibiotics, bacteria with genetic mutations that provide resistance to the drug survive and reproduce, passing on the resistant trait to future generations. Over time, the proportion of resistant bacteria in the population increases, leading to the evolution of antibiotic-resistant strains.
Evolution is the process by which living organisms change and adapt over time through natural selection. An example of evolution is the development of antibiotic resistance in bacteria. When exposed to antibiotics, only the bacteria with genetic mutations that make them resistant survive and reproduce, leading to a population of bacteria that is mostly resistant to the antibiotic.
Antibiotic resistance is a type of drug resistance where a microorganism is able to survive exposure to an antibiotic.
False. Cells containing a plasmid with an antibiotic resistance gene will survive in the presence of the antibiotic because they can produce the protein that confers resistance, allowing them to withstand the antibiotic's effects.
You are an example of human micro-evolution as the population of humans has changed allele frequency over time. Micro-evolution is just evolution; change over time.
Because nothing is proof of evolution.
Evolution of certain bacteria can lead to antibiotic resistance, making infections harder to treat. Additionally, evolution of pests can result in decreased crop yields and food shortages, impacting human food supply.
The trait giving bacteria antibiotic resistance has become common, giving bacteria with the trait a selective advantage.
Unfortunately, in recent years, the treatment of endocarditis has become more complicated as a result of antibiotic resistance
The source of antibiotic resistance is often plasmids known as R plasmids, which carry genes that confer resistance to antibiotics. These plasmids can be transferred between bacteria, spreading antibiotic resistance throughout microbial populations.