surgar will move into the cell
The net effect would be water moving into the cell. This occurs because water moves from an area of higher concentration (outside the cell) to an area of lower concentration (inside the cell) to equalize the concentration of solutes. This leads to cell swelling or potentially bursting if not regulated.
In biological systems, water is typically hypotonic, meaning it has a lower concentration of solutes compared to the inside of cells.
In biological systems, water is considered hypotonic because it has a lower concentration of solutes compared to the inside of cells.
Osmosis. A solution with a low concentration of solutes would have a higher concentration of water than a solution with a high concentration of solutes. So in this case, water is moving from a higher concentration of water to a lower concentration of water, which is osmosis.
The substance moved into the water through osmosis. The concentration of the substances inside the dialysis bag was higher than in the water and membrane was permeable to the substances. As such, they moved from a high to a low concentration along a concentration gradient.
It depends on the concentration of solutes inside and outside the baggie or beaker. If the concentration of solutes is higher inside the baggie or beaker compared to the surrounding environment, then it is hypertonic. If the concentration is lower, then it is hypotonic.
"Hypotonic" refers to a solution that has a lower concentration of solutes compared to another solution. In biology, a hypotonic solution has a lower concentration of solutes outside of a cell compared to inside, causing water to move into the cell and potentially cause it to swell and burst.
The three types of solutions in animal and plant cells are isotonic, hypotonic and hypertonic. In an isotonic solution, the concentration of solutes is the same inside and outside of the cell. In a hypotonic solution, the concentration of solutes is lower outside the cell compared to inside, causing the cell to swell. In a hypertonic solution, the concentration of solutes is higher outside the cell compared to inside, causing the cell to shrink.
Osmosis, which is the movement of water across a semi-permeable membrane from where it is in high concentration to where it is in lower concentration. The purpose of osmosis is to equalize the concentration of solutes inside a cell and outside a cell.
During osmosis, water molecules move from an area of higher water concentration to an area of lower water concentration through a semi-permeable membrane. This process helps to equalize the concentration of solutes on both sides of the membrane.
The net movement of solutes to regions of lower concentration is called diffusion. This process occurs in response to the concentration gradient, where solutes move from areas of higher concentration to areas of lower concentration until equilibrium is reached.
Hypertonic and hypotonic solutions both refer to the concentration of solutes compared to a cell. In a hypertonic solution, the concentration of solutes is higher outside the cell, causing water to move out of the cell. In a hypotonic solution, the concentration of solutes is lower outside the cell, causing water to move into the cell.
Osmosis
A solution is hypotonic if it has a lower concentration of solutes compared to another solution. This can be determined by observing whether a cell placed in the solution gains water and swells up, indicating that water is moving into the cell due to the lower concentration of solutes outside the cell.
Osmosis. A solution with a low concentration of solutes would have a higher concentration of water than a solution with a high concentration of solutes. So in this case, water is moving from a higher concentration of water to a lower concentration of water, which is osmosis.
Osmosis. A solution with a low concentration of solutes would have a higher concentration of water than a solution with a high concentration of solutes. So in this case, water is moving from a higher concentration of water to a lower concentration of water, which is osmosis.
A hypotonic solution. The concentration of solute inside the cell is greater than that outside the cell and water enters the cell by osmosis. Water travels from an area of higher water concentration (outside the cell) to an area of lower water concentration (inside the cell) and the cell swells.