Electron transport has the greatest number of ATP molecules.
The maximum number of ATP molecules that can be produced from each glucose molecule in aerobic respiration is 36-38 ATP molecules. This occurs through glycolysis, the citric acid cycle, and the electron transport chain.
To calculate the number of ATP molecules produced by aerobic respiration, you can use the theoretical yield of ATP per glucose molecule, which is 36-38 ATP. This range accounts for the energy produced through glycolysis, the citric acid cycle, and oxidative phosphorylation. Keep in mind that actual yield may vary depending on factors like efficiency of the electron transport chain.
The actual number of ATP produced from the complete oxidation of one molecule of glucose is around 30-32 ATP molecules. This includes ATP generated through glycolysis, the Krebs cycle, and oxidative phosphorylation in the mitochondria.
2. (1)glucose --> (2)Carbon dioxide + (2) Ethanol + (2) ATP aerobic on the other hand produces 38 Atp per glucose molecule. (1) glucose + (6) oxygen---> (6) oxygen + (1) water + (38) atp
In aerobic respiration, one glucose molecule typically produces 36-38 ATP molecules through glycolysis, the Krebs cycle, and the electron transport chain. In anaerobic respiration, such as fermentation, the number of ATP molecules produced is lower, around 2 ATP molecules.
2
The Two molecules of pyruvic acid produced in ATP molecules
The efficiency of glycolysis would remain the same regardless of the number of ATP molecules produced because efficiency is calculated based on the ratio of ATP molecules produced to glucose molecules consumed. Increasing the number of ATP molecules produced would not affect this ratio, therefore the efficiency would stay constant.
72 molecules of ATP are produced .
The maximum number of ATP molecules that can be produced from each glucose molecule in aerobic respiration is 36-38 ATP molecules. This occurs through glycolysis, the citric acid cycle, and the electron transport chain.
The net number of ATP molecules produced from the complete oxidation of lauric acid (C12:0) is approximately 106 ATP molecules. This is based on the beta-oxidation process that occurs in the mitochondria, generating ATP through the electron transport chain and oxidative phosphorylation.
They are produced in the mitochondria of the cell.
During glycolysis, a net of 2 ATP molecules are produced per glucose molecule. However, it's important to note that 4 ATP molecules are produced during glycolysis, but 2 ATP molecules are consumed in the initial steps, resulting in a net gain of 2 ATP molecules.
To calculate the number of ATP molecules produced by aerobic respiration, you can use the theoretical yield of ATP per glucose molecule, which is 36-38 ATP. This range accounts for the energy produced through glycolysis, the citric acid cycle, and oxidative phosphorylation. Keep in mind that actual yield may vary depending on factors like efficiency of the electron transport chain.
2 ATP molecules are used, therefore 4 produced.
The actual number of ATP produced from the complete oxidation of one molecule of glucose is around 30-32 ATP molecules. This includes ATP generated through glycolysis, the Krebs cycle, and oxidative phosphorylation in the mitochondria.
2. (1)glucose --> (2)Carbon dioxide + (2) Ethanol + (2) ATP aerobic on the other hand produces 38 Atp per glucose molecule. (1) glucose + (6) oxygen---> (6) oxygen + (1) water + (38) atp