The transport of a substance across the cell membrane against its concentration gradient is called active transport.
concentration gradient
Active transport is the process that requires cellular energy to move a substance against its concentration gradient. This process uses ATP to pump molecules across the cell membrane, creating a concentration gradient where the molecule is more concentrated on one side of the membrane than the other.
concentration gradient
The two forces that drive passive transport of ions across a membrane are concentration gradient and electrochemical gradient. The concentration gradient occurs when ions move from an area of higher concentration to an area of lower concentration, while the electrochemical gradient is established by the combined forces of the ion's concentration gradient and the electrical charge across the membrane.
This is called a concentration gradient, which represents the difference in concentration of a substance between two locations. The substance will naturally move down the concentration gradient from areas of higher concentration to lower concentration through processes like diffusion or active transport.
A cell can transport a substance from lower to higher concentration through active transport, which uses energy to move molecules against the concentration gradient. This process typically involves the use of specialized proteins in the cell membrane to pump the molecules against the concentration gradient.
concentration gradient
A concentration gradient of a substance drives the movement of that substance from an area of high concentration to an area of low concentration. The steeper the concentration gradient, the faster the movement of the substance, requiring less energy to transport it. If the concentration on both sides of the gradient is equal, there is no net movement of the substance.
Active transport is the process that requires cellular energy to move a substance against its concentration gradient. This process uses ATP to pump molecules across the cell membrane, creating a concentration gradient where the molecule is more concentrated on one side of the membrane than the other.
concentration gradient
The term that describes the difference in concentrations of a substance across a cell's membrane is called the concentration gradient. This gradient drives the movement of substances such as ions or molecules across the membrane through processes like diffusion or active transport to achieve equilibrium.
The two forces that drive passive transport of ions across a membrane are concentration gradient and electrochemical gradient. The concentration gradient occurs when ions move from an area of higher concentration to an area of lower concentration, while the electrochemical gradient is established by the combined forces of the ion's concentration gradient and the electrical charge across the membrane.
osmosis
This is called a concentration gradient, which represents the difference in concentration of a substance between two locations. The substance will naturally move down the concentration gradient from areas of higher concentration to lower concentration through processes like diffusion or active transport.
active transport eduction. this is the process in which this moves across. peanut butter jelly time
concentration gradient
no because it is a form of passive transport. only active transport requires energy. facilitated diffusion just means that it cant be just absorbed through the membrane, it must go through specific chanels or be helped by transport proteins. but because facilitated diffusion moves from higher to lower concentrations, it requires no energy.