answersLogoWhite

0

The opening of sodium voltage-gated channels in the neuronal membrane is caused by changes in the electrical charge across the membrane, known as membrane potential. When the membrane potential reaches a certain threshold, the channels open, allowing sodium ions to flow into the neuron and generate an action potential.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Continue Learning about Biology

Opening sodium channels in the in the axon membrane causes?

Opening sodium channels in the axon membrane allows sodium ions to flow into the cell, depolarizing the membrane and generating an action potential. This action potential then travels down the axon to facilitate neuronal communication and signal transmission.


Inhibitory neurotransmitters of the CNS act by opening gates?

Inhibitory neurotransmitters in the CNS, such as GABA and glycine, act by opening chloride ion channels in the postsynaptic neuron. This influx of chloride ions hyperpolarizes the neuron, making it less likely to depolarize and generate an action potential, thus inhibiting neuronal activity.


A nerve impulse results from?

A nerve impulse results from the movement of ions across the cell membrane of a neuron, leading to a change in the electrical charge within the cell. This change in charge creates an action potential that travels down the length of the neuron, allowing for communication with other neurons or cells.


What is happening to voltage-gated channels at this point in the action potential?

During the action potential, voltage-gated channels are opening and closing to allow the flow of ions across the cell membrane, which helps transmit the electrical signal along the neuron.


Which ligand channels when open cause inhibitory post synaptic memberane potential?

Opening of ligand-gated channels for neurotransmitters such as GABA (gamma-aminobutyric acid) and glycine cause inhibitory postsynaptic membrane potential by allowing an influx of chloride ions into the neuron, hyperpolarizing the membrane and decreasing the likelihood of an action potential.

Related Questions

Opening sodium channels in the in the axon membrane causes?

Opening sodium channels in the axon membrane allows sodium ions to flow into the cell, depolarizing the membrane and generating an action potential. This action potential then travels down the axon to facilitate neuronal communication and signal transmission.


What effect will opening more of these channels have on the excitability of a neuron?

Opening more ion channels, particularly those that allow sodium (Na+) or calcium (Ca2+) ions to enter the neuron, will increase the excitability of the neuron by depolarizing the membrane potential. This makes it more likely for the neuron to reach the threshold needed to generate an action potential. Additionally, increased excitability can lead to enhanced neurotransmitter release and neuronal communication. Conversely, opening more potassium (K+) channels may decrease excitability by hyperpolarizing the membrane.


Opening of sodium channels in the membrane of a neuron results in?

depolarization.


Describe the events occurring in the cell membrane that permit the conduction of an impulse?

When a nerve impulse is conducted, the neuronal cell membrane undergoes changes in electrical potential. This starts with a rapid influx of sodium ions into the cell through voltage-gated sodium channels, depolarizing the membrane. This depolarization triggers the opening of adjacent sodium channels, resulting in an action potential that travels along the membrane. After the impulse passes, the sodium channels close, and potassium channels open, allowing potassium ions to exit the cell and restore the resting potential.


Effects of lidocaine on nerves?

it prevents sodium channels from opening which removes a neuron's resting membrane potential


Depolarization of the nerve membrane begins with?

The opening of voltage-gated sodium channels in response to a stimulus. Sodium ions flow into the cell, causing depolarization as the inside becomes more positively charged.


What cause the membrane potential of a neuron?

Opening or closing of ion channels at one point in the membrane produces a local change in the membrane potential, which causes electric current to flow rapidly to other points in the membrane.


What is the first step for nerve impulse generation?

The first step for nerve impulse generation is the depolarization of the cell membrane, which is triggered by a stimulus. This depolarization causes a change in the electrical charge of the cell membrane, leading to the opening of ion channels and the initiation of an action potential.


What effect does the opening of the potassium channels have on the charge difference across the neuron's membrane?

Opening of potassium channels allows potassium ions to move out of the neuron, leading to hyperpolarization by increasing the negative charge inside the neuron. This action increases the charge difference across the membrane, known as the resting membrane potential, making the neuron less likely to fire an action potential.


What causes NA plus channels to open?

NA plus channels open in response to a change in the membrane potential, causing the channel to undergo conformational changes that lead to its opening. This change in membrane potential can be initiated by various stimuli, such as neurotransmitter binding or depolarization of the cell.


Binding of the Acetylcholine to receptors causes a by opening what channels that permit both potassium and sodium to permeate the membrane?

Binding of acetylcholine to nicotinic acetylcholine receptors opens ion channels that allow both sodium and potassium ions to permeate the membrane. This causes depolarization of the membrane potential, leading to an excitatory response in the cell.


How does the membrane potential affect the permeability of a neurons cell membrane?

The membrane potential influences the permeability of a neuron's cell membrane by affecting the opening and closing of ion channels. When the membrane potential changes, such as during depolarization, voltage-gated ion channels open, allowing ions like sodium (Na+) to flow into the cell, increasing permeability. Conversely, during hyperpolarization, channels may close, reducing permeability to certain ions. This dynamic alteration of permeability is crucial for generating action potentials and transmitting signals in the nervous system.