answersLogoWhite

0

The steps of glycolysis that are irreversible are the conversion of glucose to glucose-6-phosphate by hexokinase, the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase-1, and the conversion of phosphoenolpyruvate to pyruvate by pyruvate kinase.

User Avatar

AnswerBot

6mo ago

What else can I help you with?

Continue Learning about Biology

Which steps in glycolysis are irreversible?

The steps in glycolysis that are irreversible are the conversion of glucose to glucose-6-phosphate by hexokinase, the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase-1, and the conversion of phosphoenolpyruvate to pyruvate by pyruvate kinase.


What are the irreversible steps in glycolysis and how do they contribute to the overall regulation of the pathway?

The irreversible steps in glycolysis are catalyzed by the enzymes hexokinase, phosphofructokinase, and pyruvate kinase. These steps help regulate the pathway by controlling the flow of glucose through glycolysis. Hexokinase converts glucose to glucose-6-phosphate, phosphofructokinase converts fructose-6-phosphate to fructose-1,6-bisphosphate, and pyruvate kinase converts phosphoenolpyruvate to pyruvate. These irreversible steps ensure that once glucose enters glycolysis, it is committed to being broken down for energy production.


What are the three irreversible steps of glycolysis and how do they contribute to the overall process of glucose metabolism?

The three irreversible steps of glycolysis are catalyzed by enzymes hexokinase, phosphofructokinase, and pyruvate kinase. These steps help regulate the flow of glucose through the glycolytic pathway by committing glucose to further metabolism. Hexokinase phosphorylates glucose, trapping it inside the cell. Phosphofructokinase controls the rate of glycolysis by regulating the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate. Pyruvate kinase catalyzes the final step, producing pyruvate and ATP. These irreversible steps ensure that glucose is efficiently broken down to produce energy in the form of ATP.


What are the irreversible steps of glycolysis and how do they contribute to the overall process of glucose metabolism?

The irreversible steps of glycolysis are the conversion of glucose to glucose-6-phosphate by hexokinase, and the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase-1. These steps help regulate the flow of glucose through the glycolytic pathway and commit the glucose molecule to further breakdown. By irreversibly trapping glucose in the cell and activating it for energy production, these steps play a crucial role in initiating and driving the overall process of glucose metabolism.


Which irreversible reactions are involved in glycolysis?

The irreversible reactions in glycolysis are catalyzed by the enzymes hexokinase, phosphofructokinase, and pyruvate kinase. These reactions involve the conversion of glucose to glucose-6-phosphate, fructose-6-phosphate to fructose-1,6-bisphosphate, and phosphoenolpyruvate to pyruvate, respectively.

Related Questions

Which steps in glycolysis are irreversible?

The steps in glycolysis that are irreversible are catalyzed by the enzymes hexokinase/glucokinase, phosphofructokinase, and pyruvate kinase. These steps are key regulatory points in glycolysis ensuring the forward flow of glucose through the pathway.


Which steps in glycolysis are irreversible?

The steps in glycolysis that are irreversible are the conversion of glucose to glucose-6-phosphate by hexokinase, the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase-1, and the conversion of phosphoenolpyruvate to pyruvate by pyruvate kinase.


What are the irreversible steps in glycolysis and how do they contribute to the overall regulation of the pathway?

The irreversible steps in glycolysis are catalyzed by the enzymes hexokinase, phosphofructokinase, and pyruvate kinase. These steps help regulate the pathway by controlling the flow of glucose through glycolysis. Hexokinase converts glucose to glucose-6-phosphate, phosphofructokinase converts fructose-6-phosphate to fructose-1,6-bisphosphate, and pyruvate kinase converts phosphoenolpyruvate to pyruvate. These irreversible steps ensure that once glucose enters glycolysis, it is committed to being broken down for energy production.


What are the three irreversible steps of glycolysis and how do they contribute to the overall process of glucose metabolism?

The three irreversible steps of glycolysis are catalyzed by enzymes hexokinase, phosphofructokinase, and pyruvate kinase. These steps help regulate the flow of glucose through the glycolytic pathway by committing glucose to further metabolism. Hexokinase phosphorylates glucose, trapping it inside the cell. Phosphofructokinase controls the rate of glycolysis by regulating the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate. Pyruvate kinase catalyzes the final step, producing pyruvate and ATP. These irreversible steps ensure that glucose is efficiently broken down to produce energy in the form of ATP.


Which statement is false regarding glycolysis?

Every step is irreversible.


What are the irreversible steps of glycolysis and how do they contribute to the overall process of glucose metabolism?

The irreversible steps of glycolysis are the conversion of glucose to glucose-6-phosphate by hexokinase, and the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase-1. These steps help regulate the flow of glucose through the glycolytic pathway and commit the glucose molecule to further breakdown. By irreversibly trapping glucose in the cell and activating it for energy production, these steps play a crucial role in initiating and driving the overall process of glucose metabolism.


Which irreversible reactions are involved in glycolysis?

The irreversible reactions in glycolysis are catalyzed by the enzymes hexokinase, phosphofructokinase, and pyruvate kinase. These reactions involve the conversion of glucose to glucose-6-phosphate, fructose-6-phosphate to fructose-1,6-bisphosphate, and phosphoenolpyruvate to pyruvate, respectively.


What are the irreversible reactions of glycolysis and how do they contribute to the overall regulation of the pathway?

The irreversible reactions of glycolysis are catalyzed by enzymes hexokinase, phosphofructokinase, and pyruvate kinase. These reactions help regulate the flow of glucose through the pathway by committing glucose to be broken down into pyruvate. This regulation ensures that glycolysis proceeds efficiently and that the cell can generate energy effectively.


What enzymes in the glycolysis pathway in the liver catalyze irreversible reactions?

Glucokinase, phosphofructokinase-1, pyruvate kinase


Which is the committed step of glycolysis?

The committed step of glycolysis is the reaction catalyzed by phophofructokine (PFK) converting fructose-6-phosphate into fructose-1,6- bisphosphate. The reaction is irreversible and secondly, it's the only reaction peculiar to the glycolysis.


Which steps of cellular respiration occur in the cytoplasm?

glycolysis


How many steps are required to complete glycolysis?

Ten