Water has two main bonds: hydrogen bonds between other water molecules, and a covalent bond between hydrogen and oxygen.
Hydrogen bonding is responsible for many of water's properties, such as high surface tension, cohesion, adhesion, and its ability to moderate temperature. This unique bonding structure allows water to form a lattice structure in its solid form and exhibit strong intermolecular forces.
Disulfide bonds are mainly responsible for the tertiary structure of proteins. They help to stabilize the three-dimensional folding of the protein by covalently linking different parts of the polypeptide chain together. In some cases, disulfide bonds can also contribute to the quaternary structure by forming intermolecular bonds between separate protein subunits.
bonds hold compounds together. Depending on the type of compound, different bonds are used. For example NaCl (sodium chloride) which is commonly referred to as table salt is held together by an ionic bond.
Tertiary structure in proteins is held together by intermolecular R group interactions, including hydrogen bonding, hydrophobic interactions, ionic interactions, and disulfide bonds. These interactions help stabilize the folding of the protein into its unique three-dimensional shape.
your teacher will probably accept hydrogen bonds, however it is more of an attraction not a physical bond
Hydrogen bonds can be considered as the strongest intermolecular attraction forces.
When water evaporates, intermolecular bonds between water molecules are broken, not intramolecular bonds within the water molecule itself. The intermolecular bonds that are broken are hydrogen bonds between water molecules, allowing them to separate and become a gas.
The strength of intermolecular bonds is weaker than intramolecular bonds. Intermolecular bonds are responsible for holding molecules together in a substance, but they are typically weaker than the covalent or ionic bonds within a molecule. Examples of intermolecular bonds include hydrogen bonds, London dispersion forces, and dipole-dipole interactions.
Intramolecular forces are not intermolecular forces !
Hydrogen bonds
Intermolecular forces shown by the dotted lines not by strong covalent bonds.
Intramolecular hydrogen bonds are stronger than intermolecular hydrogen bonds. Intramolecular hydrogen bonds occur within a single molecule, while intermolecular hydrogen bonds occur between different molecules. The close proximity of atoms within the same molecule allows for stronger interactions compared to interactions between separate molecules.
Protein molecules have covalent bonds in them, and there are hydrogen bonds that act as intermolecular bonds.
Intramolecular bonds refer to the bonds that hold atoms together within a molecule. These bonds are typically covalent or ionic. Intermolecular forces are forces of attraction between different molecules and are weaker than intramolecular bonds. Examples of intermolecular forces include hydrogen bonding, van der Waals forces, and dipole-dipole interactions.
Hydrogens Bonds
Covalent bonds
Electrolytes have ionic bonds.