Hydrolysis(break) of a phosphodiester
bond, separates two strands of DNA
Strand breakage by the DNA untwisting enzyme results in covalent
attachment of the enzyme to DNA
During DNA replication, the enzyme helicase breaks the hydrogen bonds between the two strands of DNA, allowing the strands to separate and be copied.
Helicase and RNA polymerase separate DNA strands by breaking the hydrogen bonds between complementary bases.Helicase parts the strands of DNA during DNA replication, and RNA polymerase parts them during transcription.The enzyme that separates DNA in called DNA helicases. There are two of them that work away from the origin of replication, creating in "bubble" in the DNA molecule. For eukaryotes, there would be several origins of replication but in prokaryotes, there is only one origin of replication.
(Apex) It breaks apart the bases.
Helicase is an enzyme that unwinds the double-stranded DNA molecule during replication by breaking the hydrogen bonds between the base pairs. This allows the DNA polymerase enzyme to access the separated strands and synthesize new complementary strands. In essence, helicase plays a crucial role in the initiation of DNA replication by separating the two strands of the DNA double helix.
Helicase is the enzyme responsible for unwinding the DNA double helix during DNA replication. Helicase breaks the hydrogen bonds between the base pairs, allowing the two strands to separate and serve as templates for the new DNA strands.
During DNA replication, the enzyme helicase breaks the hydrogen bonds between the two strands of DNA, allowing the strands to separate and be copied.
The first step in the process of DNA replication is the unwinding of the double helix structure of the DNA molecule. This is accomplished by the enzyme helicase, which breaks the hydrogen bonds between the complementary base pairs, separating the two strands. This creates a replication fork, allowing the DNA polymerase to access the single-stranded DNA templates for the synthesis of new complementary strands.
DNA helicase is the enzyme responsible for separating the strands of DNA during processes such as DNA replication and transcription. It unwinds the double helix structure of DNA by breaking hydrogen bonds between the complementary base pairs.
The enzyme needed to separate the strands of DNA during replication is called helicase. It unwinds and separates the double-stranded DNA by breaking the hydrogen bonds between the nucleotide bases, creating two single strands that serve as templates for replication. This process is essential for allowing DNA polymerase to synthesize new complementary strands.
Helicase and RNA polymerase separate DNA strands by breaking the hydrogen bonds between complementary bases.Helicase parts the strands of DNA during DNA replication, and RNA polymerase parts them during transcription.The enzyme that separates DNA in called DNA helicases. There are two of them that work away from the origin of replication, creating in "bubble" in the DNA molecule. For eukaryotes, there would be several origins of replication but in prokaryotes, there is only one origin of replication.
(Apex) It breaks apart the bases.
Helicase is an enzyme that unwinds the double-stranded DNA molecule during replication by breaking the hydrogen bonds between the base pairs. This allows the DNA polymerase enzyme to access the separated strands and synthesize new complementary strands. In essence, helicase plays a crucial role in the initiation of DNA replication by separating the two strands of the DNA double helix.
Helicase is the enzyme responsible for unwinding the DNA double helix during DNA replication. Helicase breaks the hydrogen bonds between the base pairs, allowing the two strands to separate and serve as templates for the new DNA strands.
when the two strands or adopters are cutted with same restriction enzyme and they are complementary to each other, they attached and recircularized.
DNA polymerase is the enzyme that "unzips" the complementary DNA strands allowing mRNA to transcribe, or copy, a section of DNA.
The enzyme needed to separate the strands of DNA during replication is called helicase. Helicase unwinds and unzips the double helix structure of DNA by breaking the hydrogen bonds between the nucleotide bases, allowing each strand to serve as a template for new complementary strands. This process is essential for accurate DNA replication.
DNA polymerase is an enzyme responsible for synthesizing new DNA strands during DNA replication. It catalyzes the formation of phosphodiester bonds between nucleotides to create a complementary strand of DNA based on a template strand.