Hydrolysis(break) of a phosphodiester
bond, separates two strands of DNA
Strand breakage by the DNA untwisting enzyme results in covalent
attachment of the enzyme to DNA
During DNA replication, the enzyme helicase breaks the hydrogen bonds between the two strands of DNA, allowing the strands to separate and be copied.
Helicase and RNA polymerase separate DNA strands by breaking the hydrogen bonds between complementary bases.Helicase parts the strands of DNA during DNA replication, and RNA polymerase parts them during transcription.The enzyme that separates DNA in called DNA helicases. There are two of them that work away from the origin of replication, creating in "bubble" in the DNA molecule. For eukaryotes, there would be several origins of replication but in prokaryotes, there is only one origin of replication.
(Apex) It breaks apart the bases.
Helicase is an enzyme that unwinds the double-stranded DNA molecule during replication by breaking the hydrogen bonds between the base pairs. This allows the DNA polymerase enzyme to access the separated strands and synthesize new complementary strands. In essence, helicase plays a crucial role in the initiation of DNA replication by separating the two strands of the DNA double helix.
Helicase is the enzyme responsible for unwinding the DNA double helix during DNA replication. Helicase breaks the hydrogen bonds between the base pairs, allowing the two strands to separate and serve as templates for the new DNA strands.
During DNA replication, the enzyme helicase breaks the hydrogen bonds between the two strands of DNA, allowing the strands to separate and be copied.
DNA helicase is the enzyme responsible for separating the strands of DNA during processes such as DNA replication and transcription. It unwinds the double helix structure of DNA by breaking hydrogen bonds between the complementary base pairs.
Helicase and RNA polymerase separate DNA strands by breaking the hydrogen bonds between complementary bases.Helicase parts the strands of DNA during DNA replication, and RNA polymerase parts them during transcription.The enzyme that separates DNA in called DNA helicases. There are two of them that work away from the origin of replication, creating in "bubble" in the DNA molecule. For eukaryotes, there would be several origins of replication but in prokaryotes, there is only one origin of replication.
(Apex) It breaks apart the bases.
Helicase is an enzyme that unwinds the double-stranded DNA molecule during replication by breaking the hydrogen bonds between the base pairs. This allows the DNA polymerase enzyme to access the separated strands and synthesize new complementary strands. In essence, helicase plays a crucial role in the initiation of DNA replication by separating the two strands of the DNA double helix.
when the two strands or adopters are cutted with same restriction enzyme and they are complementary to each other, they attached and recircularized.
DNA polymerase is the enzyme that "unzips" the complementary DNA strands allowing mRNA to transcribe, or copy, a section of DNA.
Helicase is the enzyme responsible for unwinding the DNA double helix during DNA replication. Helicase breaks the hydrogen bonds between the base pairs, allowing the two strands to separate and serve as templates for the new DNA strands.
The enzyme that binds to DNA and separates the DNA strands during transcription is RNA polymerase. It is responsible for synthesizing a complementary RNA strand using one of the DNA strands as a template. This process is essential for gene expression and protein synthesis.
DNA polymerase is an enzyme responsible for synthesizing new DNA strands during DNA replication. It catalyzes the formation of phosphodiester bonds between nucleotides to create a complementary strand of DNA based on a template strand.
The enzyme that breaks apart the double helix to expose two template strands is called helicase. It unwinds the DNA by breaking the hydrogen bonds between the base pairs, allowing access for other enzymes involved in DNA replication and repair. This unwinding is essential for processes such as DNA replication, transcription, and repair, as it enables the necessary access to the genetic information contained within the DNA strands.
The enzyme that cuts DNA is called a restriction enzyme, while the enzyme that seals DNA is called DNA ligase. Restriction enzymes cut DNA at specific sequences, creating breaks in the DNA strands, while DNA ligase seals these breaks by catalyzing the formation of phosphodiester bonds between the DNA fragments.