Very basically: * specificity - the better 'fit' the substrate, the higher the rate of catalysis. * temperature - higher temp = more kinetic energy = faster eaction. However, too high and the enzyme becomes irreversibly denatured and will not work at all. (denatured = the folding of the peptide chains are disrupted, meaning that the shape changes and the substrates no longer fit). The temperature at which the reaction occurs at the fastest rate is called the optimum temperature. * pH - enzymes have specific pH that they work best at (the optimum/optimal pH), as pH can also affect the bonds holding the tertiary structure together (especially ionic bonds), denaturing the enzyme. * concentration of enzyme and substrate - rate of reaction is proportional to the enzyme/substrate concentration. However, at a given enzyme concentration, substrate conc is proprtional to rate up to a point when the enzyme becomes saturated and the rate remains constant. * cofactors/coenzymes - some enzymes require interaction with other molecules to show full catalytic activity. * inhibitors - the presence of an inhibitor lowers the rate of catalysis. There are competitive, uncompetitive, non-competitive and mixed inhibitors, they can bind reversibly or irreversibly, at the active site or an allosteric site... That's a very simple, school textbook answer (and I may have forgotten a factor?). For more detail, any biochemistry textbook should be able to help.
Factors that affect the rate of enzyme activity include temperature, pH, substrate concentration, and enzyme concentration. Temperature and pH can alter the shape of the enzyme, affecting its ability to bind to the substrate. Changes in substrate and enzyme concentration can affect the frequency of enzyme-substrate collisions, which impacts the rate of reaction.
isn't the reason for this site iis your suppost to know the answer ??
Yes, the activity of chymosin, an enzyme involved in cheese making, is influenced by pH. Chymosin works best at its optimal pH level, which is usually slightly acidic. Deviations from this pH can affect the enzyme's activity and may slow down or inhibit its function.
Enzymes work best in the pH and temperature that they are " designed " for. A pepsin enzyme works best in the low pH environment of the stomach, while amylase works best at mouth temperature and ~ 7 pH. Heat and out of range pH can denature enzymes and not only affect their activity but inactivate them.
The first factor is Enzyme concentration or subtrate concentration.The rate of enzyme action is directly proportional to to the availability of enzyme provided the substrate concentration unlimited.Or the rate is directly proportional to the substrate concentration if enzymes are limited but if enzyme concentration is kept constant then upto the certain level the increase in substrate amount will no longer increase the rate of enzyme action. Second factor is temperature.The rate if an enzyme action is always directly proportional to the increase in temperature but upto the specific limit called as optimum temperature. Third factor is the pH value.Enzymes can work efficiently over a narrow range of pH called as Optimum pH.A minor change in pH value can denature the enzyme.
Factors that affect the rate of enzyme activity include temperature, pH, substrate concentration, and enzyme concentration. Temperature and pH can alter the shape of the enzyme, affecting its ability to bind to the substrate. Changes in substrate and enzyme concentration can affect the frequency of enzyme-substrate collisions, which impacts the rate of reaction.
Several factors affect the rate at which enzymatic reactions proceed - temperature, pH, enzyme concentration, substrate concentration, and the presence of any inhibitors or activator
The four factors that affect enzyme activity are temperature, pH, substrate concentration, and the presence of inhibitors or activators. Temperature and pH can alter the enzyme's shape, while substrate concentration determines the rate of reaction. Inhibitors and activators can either decrease or increase enzyme activity, respectively.
Three things that can alter the rate of an enzyme are; temperature, pH and substrate concentration. Enzymes will have an optimal temperature and pH, at which they will have the greatest rate. Below or above these optimum conditions, the rate will be slower.
isn't the reason for this site iis your suppost to know the answer ??
It doesn't
Enzymes follow a specific procedure called "lock and key" model, where they bind to substrates to catalyze reactions. Factors that affect enzyme activity include temperature, pH, substrate concentration, and the presence of inhibitors or activators. These factors can alter the enzyme's structure, affecting its ability to bind to substrates and catalyze reactions effectively.
Several factors can influence enzyme function, including temperature, pH level, substrate concentration, and the presence of inhibitors or activators. Changes in these factors can affect the enzyme's ability to bind to its substrate and catalyze reactions effectively.
Yes, the activity of chymosin, an enzyme involved in cheese making, is influenced by pH. Chymosin works best at its optimal pH level, which is usually slightly acidic. Deviations from this pH can affect the enzyme's activity and may slow down or inhibit its function.
Adding another substrate can either increase or decrease the rate at which an enzyme works. If the additional substrate competes with the original substrate for the active site, it can slow down the enzyme activity (competitive inhibition). On the other hand, if the additional substrate binds to a different site on the enzyme and enhances its activity, it can speed up the enzyme reaction.
It doesn't
It doesn't