A non-example of biomagnification would be the dilution effect, where a substance becomes less concentrated as it moves up the food chain. This occurs when an organism consumes a substance that is more diluted or reduced in concentration compared to its environment, preventing the accumulation of the substance in higher trophic levels.
multiply the magnification of the eyepiece by the magnification of the high objective lens. for example, if the eyepiece magnifies x10, and the high objective magnifies x40, then the total magnification would be 400x
To calculate the total magnification of a compound microscope, you simply multiply the magnification of the eyepiece by the magnification of the objective. For example, if the eyepiece magnifies 10x and the objective magnifies 40x, then the total magnification is 10x * 40x = 400x.
Total magnification is calculated by multiplying the magnification of the objective lens by the magnification of the eyepiece lens. For example, if the objective lens has a magnification of 40x and the eyepiece lens has a magnification of 10x, the total magnification would be 40x * 10x = 400x.
The total magnification is the object magnification for example 4x,10x etc. times eyepiece magnification usually 10x and you get the total magnification. The objective lens magnification is the lens right above the slide usually 4x,10x etc.
Bio magnification is the process where toxins become more concentrated as they move up the food chain, whereas the energy pyramid shows the flow of energy through trophic levels with energy decreasing as it moves up. Both concepts illustrate the transfer of substances (toxins or energy) through an ecosystem, but in different ways.
Yes, it is true.
Bio-magnification is important to humans because it can lead to the accumulation of harmful substances in the food chain, such as pesticides or heavy metals, which can ultimately end up in our food and pose health risks. Understanding bio-magnification helps us make informed choices about the food we consume and the impact of pollutants on our environment.
DDT is dichlorodiphenyltrichlorethane; biomagnification of DDT in some organisms is possible.
non bio deggradable wastes are those which donot get rotten
multiply the magnification of the eyepiece by the magnification of the high objective lens. for example, if the eyepiece magnifies x10, and the high objective magnifies x40, then the total magnification would be 400x
The total magnification in a microscope is determined by multiplying the magnification of the objective lens by the magnification of the eyepiece. For example, if the objective lens has a magnification of 10x and the eyepiece has a magnification of 5x, the total magnification would be 10x * 5x = 50x.
You must stain the specimen for the magnification to show them clearly.
The magnification of a microscope is determined by multiplying the magnification of the objective lens by the magnification of the eyepiece. For example, if the objective lens has a magnification of 10x and the eyepiece has a magnification of 20x, the total magnification would be 10x * 20x = 200x.
Multiply the magnification of the eyepiece - by the magnification of the object lens. For example - if the eyepiece is labeled 10x, and the object lense is 12x... then the total magnification is 120x
You will need to use magnification in order to identify the cells on the slides.
To calculate the total magnification of a microscope, you multiply the magnification of the objective lens by the magnification of the eyepiece. For example, if the objective lens has a magnification of 40x and the eyepiece has a magnification of 10x, the total magnification would be 40x * 10x = 400x.
The magnification of a compound light microscope is determined by multiplying the magnification of the ocular lens (eyepiece) by the magnification of the objective lens. For example, if the ocular lens has a magnification of 10x and the objective lens has a magnification of 40x, the total magnification would be 10x * 40x = 400x.