Oxidative phosphorylation occurs in order to produce energy in the form of ATP.
It occurs after chemiosmosis, in which a concentration gradient of hydrogen ions is created in the mitochondria between the matrix and the intermembrane space.
As the hydrogen ions flow across this gradient, ADP and Pi are combined and ATP is produced.
Hope this helps!
The opposite of oxidative phosphorylation is not a specific biological process, as it refers to the metabolic pathway that occurs in mitochondria to generate ATP from ADP using oxygen. However, an anaerobic process like fermentation can be considered as an alternative to oxidative phosphorylation.
ATP in fermentation is typically produced by substrate-level phosphorylation, which involves the direct transfer of a phosphate group to ADP from a phosphorylated substrate. Oxidative phosphorylation, which involves the use of an electron transport chain to produce ATP, is not generally involved in fermentation.
Photophosphorylation is most similar to oxidative phosphorylation in that it involves the production of ATP through a series of redox reactions that generate a proton gradient across a membrane. However, in photophosphorylation, the energy for driving the process is derived from light instead of the oxidation of organic molecules.
Oxidative phosphorylation produces more energy in cells compared to aerobic glycolysis. Oxidative phosphorylation occurs in the mitochondria and involves the electron transport chain, while aerobic glycolysis takes place in the cytoplasm and produces energy through the breakdown of glucose.
Cells with mitochondria carry out oxidative phosphorylation. Oxidative phosphorylation involves the transfer of electrons in mitochondrial protein complexes that serve as electron donors and electron acceptors. The process yields molecular oxygen and energy in form of adenosine triphosphate.
The electron transport chain is also known as the respiratory chain.
The opposite of oxidative phosphorylation is not a specific biological process, as it refers to the metabolic pathway that occurs in mitochondria to generate ATP from ADP using oxygen. However, an anaerobic process like fermentation can be considered as an alternative to oxidative phosphorylation.
Mitochondria
Yes, oxidative phosphorylation is a vital part of cellular metabolism as it produces the majority of ATP in aerobic organisms. ATP is the primary energy source for cellular processes, making oxidative phosphorylation crucial for overall metabolism function.
Another name for oxidative phosphorylation is electron transport chain.
Yes, Wikipedia does offer in depth information on Oxidative Phosphorylation. They break it down into many parts and have several diagrams to explain what it is.
ATP in fermentation is typically produced by substrate-level phosphorylation, which involves the direct transfer of a phosphate group to ADP from a phosphorylated substrate. Oxidative phosphorylation, which involves the use of an electron transport chain to produce ATP, is not generally involved in fermentation.
Cell membrane
Because it is oxidative and depends mainly on oxidative phosphorylation for energy.
The purpose of electron carriers such as NADH and FADH2 is to dump electrons at the electron transport chain. This creates a proton gradient and allows oxidative phosphorylation to take place.
Photophosphorylation is most similar to oxidative phosphorylation in that it involves the production of ATP through a series of redox reactions that generate a proton gradient across a membrane. However, in photophosphorylation, the energy for driving the process is derived from light instead of the oxidation of organic molecules.
Oxidative phosphorylation is ATP synthesis driven by electron transfer to oxygen and photophosphorylation is ATP synthesis driven by light. Oxidative phosphorylation is the culmination of energy-yielding metabolism in aerobic organisms and photophosphorylation is the means by which photosynthetic organisms capture the energy of sunlight, the ultimate source of energy in the biosphere.