answersLogoWhite

0

alloesterinc enzymes have 2 or more binding sites which can bind the same or different molecules. When a molecule bind one of the sites the other site changes conformation and gets a higher affinity for a ligand. this is allostric coorporation. alloestric sites can also regulate binding of a ligand by preventing binding if they are occupied. this is alloesteric regulation. allo means "other" sterio means "site" so allosteric means "other site". a regular enzyme has one or more binding sites but they are independent of each other i.e. binding of a ligand to one site does not increase or decrease affinity of binding in the other site.

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Biology

What is the difference between a noncompetitive inhibitor and an allosteric inhibitor in enzyme regulation?

A noncompetitive inhibitor binds to an enzyme at a site other than the active site, while an allosteric inhibitor binds to a different site on the enzyme, causing a change in the enzyme's shape and reducing its activity.


What is the difference between a competitive inhibitor and an allosteric inhibitor in terms of their mechanisms of action on enzymes?

A competitive inhibitor competes with the substrate for the active site of an enzyme, blocking its function. An allosteric inhibitor binds to a different site on the enzyme, causing a conformational change that reduces the enzyme's activity.


What is the difference between an allosteric inhibitor and a competitive inhibitor in terms of their mechanisms of action on enzyme activity?

An allosteric inhibitor binds to a site on the enzyme that is separate from the active site, causing a change in the enzyme's shape and reducing its activity. A competitive inhibitor, on the other hand, competes with the substrate for binding to the active site of the enzyme, blocking its function.


What is the difference between an allosteric inhibitor and a noncompetitive inhibitor in terms of their mechanisms of action on enzyme activity?

An allosteric inhibitor binds to a site on the enzyme that is different from the active site, causing a change in the enzyme's shape and reducing its activity. A noncompetitive inhibitor binds to either the enzyme or the enzyme-substrate complex, also reducing enzyme activity but without directly competing with the substrate for the active site.


What is the difference between allosteric inhibition and competitive inhibition in enzyme regulation?

Allosteric inhibition occurs when a molecule binds to a site on an enzyme that is not the active site, causing a change in the enzyme's shape and reducing its activity. Competitive inhibition, on the other hand, happens when a molecule competes with the substrate for the active site of the enzyme, blocking the substrate from binding and inhibiting the enzyme's function.

Related Questions

What is the difference between a noncompetitive inhibitor and an allosteric inhibitor in enzyme regulation?

A noncompetitive inhibitor binds to an enzyme at a site other than the active site, while an allosteric inhibitor binds to a different site on the enzyme, causing a change in the enzyme's shape and reducing its activity.


What is the difference between a competitive inhibitor and an allosteric inhibitor in terms of their mechanisms of action on enzymes?

A competitive inhibitor competes with the substrate for the active site of an enzyme, blocking its function. An allosteric inhibitor binds to a different site on the enzyme, causing a conformational change that reduces the enzyme's activity.


What is the difference between an allosteric inhibitor and a competitive inhibitor in terms of their mechanisms of action on enzyme activity?

An allosteric inhibitor binds to a site on the enzyme that is separate from the active site, causing a change in the enzyme's shape and reducing its activity. A competitive inhibitor, on the other hand, competes with the substrate for binding to the active site of the enzyme, blocking its function.


What is the difference between an allosteric inhibitor and a noncompetitive inhibitor in terms of their mechanisms of action on enzyme activity?

An allosteric inhibitor binds to a site on the enzyme that is different from the active site, causing a change in the enzyme's shape and reducing its activity. A noncompetitive inhibitor binds to either the enzyme or the enzyme-substrate complex, also reducing enzyme activity but without directly competing with the substrate for the active site.


What is the difference between allosteric inhibition and competitive inhibition in enzyme regulation?

Allosteric inhibition occurs when a molecule binds to a site on an enzyme that is not the active site, causing a change in the enzyme's shape and reducing its activity. Competitive inhibition, on the other hand, happens when a molecule competes with the substrate for the active site of the enzyme, blocking the substrate from binding and inhibiting the enzyme's function.


What are the key differences between non-competitive inhibition and allosteric inhibition in enzyme regulation?

Non-competitive inhibition occurs when an inhibitor binds to an enzyme at a site other than the active site, changing the enzyme's shape and reducing its activity. Allosteric inhibition involves an inhibitor binding to a specific regulatory site on the enzyme, causing a conformational change that decreases enzyme activity. The key difference is that non-competitive inhibition does not compete with the substrate for the active site, while allosteric inhibition involves binding to a separate site on the enzyme.


What is the difference between allosteric and non-competitive inhibition in enzyme regulation?

Allosteric inhibition occurs when a molecule binds to a site on the enzyme that is not the active site, causing a change in the enzyme's shape and reducing its activity. Non-competitive inhibition, on the other hand, involves a molecule binding to the enzyme at a site other than the active site, but still affecting the enzyme's activity without changing its shape.


What blocks enzyme activity by binding to allosteric site of an enzyme causing the enzyme's active site to change shape?

Allosteric inhibitors bind to a specific site on an enzyme (allosteric site) other than the active site, inducing a conformational change that decreases enzyme activity. This alteration prevents the substrate from binding to the active site, thus blocking the enzyme's ability to catalyze reactions.


What is characteristic of allosteric effectors?

Allosteric effectors may not resemble the enzyme's substrates.


Is uncompetitive inhibition an example of allosteric regulation in enzyme activity?

Yes, uncompetitive inhibition is an example of allosteric regulation in enzyme activity.


How does the allosteric enzyme curve illustrate the relationship between enzyme activity and the binding of regulatory molecules?

The allosteric enzyme curve shows how enzyme activity changes when regulatory molecules bind to the enzyme. This curve demonstrates that the binding of regulatory molecules can either increase or decrease enzyme activity, depending on the specific enzyme and regulatory molecule involved.


What statement is characteristic of allosteric effectors?

Allosteric effectors may not resemble the enzyme's substrates.