in simple terms the FAD carrier molecule is found within the mitochondria, after the glucose has produced pyruvic acid during aerobic exercise, it joins into the mitochondria where it become acetyloenzyme A (2 carbon compound) and joins with oxaldacetic acid (4 carbon compound) to form citric acid, a bi product of this is the hydrogen ions, the FAD molecule takes the hydrogen ions into the electron transport chain for it to be turned to energy.
:)
The electron carrier molecules of the Krebs cycle are NADH and FADH2. In the Calvin cycle, the electron carrier molecule is NADPH.
The reduced form of Flavin Adenine Dinucleotide (FAD) is called FADH2. It is an important molecule in cellular respiration, where it acts as an electron carrier in the electron transport chain.
In photosynthesis, carrier molecules like NADPH and ATP play crucial roles in transferring energy and electrons during the light-dependent reactions. NADPH carries energized electrons to fuel the Calvin cycle, while ATP provides energy for glucose synthesis. These molecules help convert light energy into chemical energy that plants use for growth and survival.
When FADH2 is converted to FAD, it has been oxidized by losing two hydrogen atoms and releasing two protons and two electrons. This transformation allows FAD to carry out its role in the electron transport chain by accepting and transferring electrons.
In a cell analogy, FAD stands for Flavine Adenine Dinucleotide. It is a coenzyme that plays a crucial role in cellular respiration by accepting and donating electrons during the formation of ATP.
Flavin adenine dinucleotide (FAD) serves primarily as a hydrogen atom carrier molecule in cells.
One example of an electron carrier molecule is NAD+ (nicotinamide adenine dinucleotide). NAD+ is involved in redox reactions, acting as a carrier of electrons during cellular respiration to help generate ATP. It accepts electrons from substrates and becomes reduced to NADH, which can then donate the electrons to the electron transport chain for ATP production.
The electron carrier molecules of the Krebs cycle are NADH and FADH2. In the Calvin cycle, the electron carrier molecule is NADPH.
NAD+ (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) primarily serve as hydrogen-atom carrier molecules in cells during various metabolic processes. They can accept and donate hydrogen atoms to participate in redox reactions that are essential for energy production in the cell.
The molecule you are referring to is NAD+ (nicotinamide adenine dinucleotide). It acts as a coenzyme electron carrier in the Krebs cycle by accepting and donating electrons during the oxidation-reduction reactions that occur in the cycle.
FAD is an electron carrier used in the electron transport chain.
There are 2 FAD and NAD and molecules. This is to breakdown each glucose molecule.
NAD+ (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) are common carrier molecules for hydrogen in biological systems. They accept and transfer pairs of electrons during redox reactions, helping to generate ATP in cellular respiration.
The reduced form of Flavin Adenine Dinucleotide (FAD) is called FADH2. It is an important molecule in cellular respiration, where it acts as an electron carrier in the electron transport chain.
carrier molecule1. A molecule that plays a role in transporting electrons through the electron transport chain. Carrier molecules are usually proteins bound to a nonprotein group; they can undergo oxidation and reduction relatively easily, thus allowing electrons to flow through the system. There are four types of carrier: flavoproteins (e.g. FAD), cytochromes, iron-sulphur proteins (e.g. ferredoxin), and ubiquinone.2. A lipid-soluble molecule that can bind to lipid-insoluble molecules and transport them across membranes. Carrier molecules have specific sites that interact with the molecules they transport. Several different molecules may compete for transport by the same carrier. See transport protein.
NAD+ and FAD are electron carriers that function in the Krebs cycle to accept and transport electrons from various reactions within the cycle. They play a crucial role in transferring these electrons to the electron transport chain for ATP production.
A. both NAD plus and FAD