A hydrogen bond--two between A and T and three between G and C.
your teacher will probably accept hydrogen bonds, however it is more of an attraction not a physical bond
The weakest bonds in a double-stranded molecule of deoxyribonucleic acid exist between the nitrogenous bases of the two strands. These bonds are hydrogen bonds, which form between specific complementary base pairs (adenine with thymine, and guanine with cytosine).
Hydrogen bonds
The middle of a DNA molecule consists of nitrogenous bases (adenine, thymine, cytosine, and guanine) that pair up to form the genetic code. These bases are connected by hydrogen bonds, forming the double helix structure of DNA.
DNA is a double-stranded molecule twisted into a helix (think of a spiral staircase). Each spiraling strand, comprised of a sugar-phosphate backbone and attached bases, is connected to a complementary strand by non-covalent hydrogen bonding between paired bases. The bases are adenine (A), thymine (T), cytosine (C) and guanine (G). A and T are connected by two hydrogen bonds. G and C are connected by three hydrogen bonds.
Hydrogen bonds occur between the nitrogenous bases in DNA. These bonds are relatively weak and allow the bases to pair up in specific combinations (A-T and C-G) to form the double helix structure of the DNA molecule.
your teacher will probably accept hydrogen bonds, however it is more of an attraction not a physical bond
The weakest bonds in a double-stranded molecule of deoxyribonucleic acid exist between the nitrogenous bases of the two strands. These bonds are hydrogen bonds, which form between specific complementary base pairs (adenine with thymine, and guanine with cytosine).
The multiple relatively weak bonds between complementary nitrogenous bases that hold double-stranded DNA together are known as hydrogen bonds. Hydrogen bonds form between adenine (A) and thymine (T), and between guanine (G) and cytosine (C) in a DNA molecule.
Hydrogen bonds connect the nitrogenous bases in a molecule of DNA. These bonds are relatively weak but crucial for maintaining the structure of the DNA double helix.
Hydrogen bonds hold bases together in DNA. These bonds form between the nitrogenous bases adenine (A) and thymine (T), and between cytosine (C) and guanine (G), helping to stabilize the DNA molecule's double helix structure.
across the nitrogenous bases, they form between the complementary base pairs Thymine and Adenine and also cytosine and guanine
Hydrogen bonds hold the bases together in pairs in DNA. These bonds form between the nitrogenous bases adenine and thymine, and guanine and cytosine in a complementary manner, contributing to the overall stability and structure of the DNA molecule.
Hydrogen bonds form between two nitrogenous bases. These bonds are relatively weak compared to covalent bonds, allowing the DNA double helix to unzip during processes like replication and transcription.
Hydrogen bonds
Hydrogen bonds
Hydrogen bonding occurs between the nitrogenous bases in the DNA molecule. Specifically, hydrogen bonds form between adenine and thymine (or uracil in RNA), as well as between guanine and cytosine. These hydrogen bonds are important for maintaining the double helix structure of DNA.