a DNA nucleotide
phosphodiesterbonds
A DNA molecule consists of two strands that are made up of sugar (deoxyribose) and phosphate molecules. The sides of the DNA molecule are formed by alternating sugar and phosphate molecules linked together to create a backbone for the molecule.
Deoxyribose sugar alternates with phosphate to make up the sides of the DNA molecule. This forms the backbone of the DNA structure, with the phosphate group linking the sugar molecules together through phosphodiester bonds.
A phosphodiester bond holds the deoxyribose sugar and phosphate group together in a DNA molecule. This bond forms between the 3' carbon of one deoxyribose and the 5' carbon of the adjacent deoxyribose in the DNA backbone.
The sides of the DNA ladder are made up of alternating sugar (deoxyribose) and phosphate molecules, linked together in a chain. These sugar-phosphate backbones provide the structural support for the DNA molecule.
phosphodiesterbonds
A DNA molecule consists of two strands that are made up of sugar (deoxyribose) and phosphate molecules. The sides of the DNA molecule are formed by alternating sugar and phosphate molecules linked together to create a backbone for the molecule.
Deoxyribose sugar alternates with phosphate to make up the sides of the DNA molecule. This forms the backbone of the DNA structure, with the phosphate group linking the sugar molecules together through phosphodiester bonds.
A phosphodiester bond holds the deoxyribose sugar and phosphate group together in a DNA molecule. This bond forms between the 3' carbon of one deoxyribose and the 5' carbon of the adjacent deoxyribose in the DNA backbone.
Yes,it is a part.It builds up DNA together with a nitrogenous base and a phosphate group.
The sides of the DNA ladder are made up of alternating sugar (deoxyribose) and phosphate molecules, linked together in a chain. These sugar-phosphate backbones provide the structural support for the DNA molecule.
The DNA backbone is made of phosphate group and deoxyribose, and they are held together by covalent bonding.
Deoxyribose is a key component of the DNA molecule as it forms the "backbone" of the DNA strand. It provides stability and structure to the DNA molecule by linking the individual nucleotides together. Without deoxyribose, DNA could not exist in its double helix structure and carry out its functions in storing genetic information.
The sides of a DNA molecule are made up of alternating deoxyribose sugar and phosphate molecules, linked together by phosphodiester bonds. This forms the backbone of the DNA double helix, with the nitrogenous bases projecting inward towards each other.
The backbone of the DNA molecule is made up of alternating sugar (deoxyribose) and phosphate groups. These sugar-phosphate backbones run along the outside of the double helix structure, providing stability to the DNA molecule.
In DNA, sugars refer to the deoxyribose molecules that make up the backbone of the DNA double helix. These sugars are linked together by phosphate groups, forming the sugar-phosphate backbone of the DNA molecule.
Out of these options: cytidine, phosphate group, ribose Guanine, phosphate group, ribose adenine, phosphate group, ribose cytosine, phosphate group, ribose deoxyribose, phosphate group, thymine deoxyribose, phosphate group, uracil The answer is: deoxyribose, phosphate group, thymine