From energy in photons
The thylakoid membrane contains 2 photosytems, known as Photosystem I and Photosystem II. Together, they function to absorb light and transfer energy to electrons.
they move through an electron transport chain to photosystem 1
is a cluster of pigments, with a perticular chlorophyl in the center. The energy is absorbed and is then passed to the Hugh energy electrons, NADP will then pick up the electrons and make NADPH
In photosynthesis, electrons flow from water molecules to photosystem II, then to photosystem I, and finally to NADP+ ultimately producing NADPH. Along the way, the electrons generate a proton gradient that drives ATP production.
Oxidized P680 receives its electrons, from water oxidization. (2H2O --> O2 + 4H+ + 4e-).
The thylakoid membrane contains 2 photosytems, known as Photosystem I and Photosystem II. Together, they function to absorb light and transfer energy to electrons.
Electrons in photosystem II get their energy from sunlight. When photons from sunlight are absorbed by the chlorophyll molecules in the photosystem, the energy is transferred to electrons, allowing them to become excited and drive the process of photosynthesis.
they move through an electron transport chain to photosystem 1
Photosystem II most likely evolved first because it provides the energy for producing ATP and passes its electrons to photosystem I.
They pass through a series of compounds to photosystem I, losing energy along the way. Photosystem I, like photosystem II, emits high-energy electrons in the light, and the electrons from photosystem II replace these. Photosystem II contains chlorophyll molecules. When a photon (quantum of light) reaches one of these chlorophyll molecules, the light energy activates an electron. This is then passed to the reaction center of the photosystem, where there are two molecules of chlorophyll P680. These pass the electrons to plastoquinone, which, like the chlorophylls, is embedded in the thylakoid membrane. The plastoquinone changes its position within the membrane, and passes the electrons to cytochromes b6 and f. At this stage the electrons part with a significant proportion of their energy, which is used to pump protons (H+) into the thylakoid lumen. These protons will later be used to generate ATP by chemiosmosis. The electrons now pass to plastocyanin, which is outside the membrane on the lumen side. Photosystem I is affected by light in much the same way as photosystem II. Chlorophyll P700 passes an activated electron to ferredoxin, which is in the stroma (the liquid outside the thylakoid). Ferredoxin in turn passes the electrons on, reducing NADP+ to NADPH + H+. Photosystem I accepts electrons from plastocyanin. So, effectively, photosystem II donates electrons to photosystem I, to replace those lost from photosystem I in sunlight. How does photosystem II recover electrons? When it loses an electron, photosystem II becomes an oxidizing agent, and splits water: 2H2O forms 4H+ + 4e- + O2. The electrons return photosystem II to its original state, and the protons add to the H+ concentration in the thylakoid lumen, for later use in chemiosmosis. The oxygen diffuses away.
Electrons for photosystem II come from the splitting of water molecules during the light-dependent reactions of photosynthesis. This process, known as photolysis, occurs in the thylakoid membranes of chloroplasts. The electrons released from water molecules replace those lost by chlorophyll molecules in photosystem II, allowing the photosystem to continue the electron transport chain and ultimately produce ATP and NADPH for the Calvin cycle.
The photosynthetic unit where this occurs is the photosystem. Photosystems I and II are responsible for absorbing solar energy and generating high-energy electrons through the process of photosynthesis. These electrons are then used to power the production of ATP and NADPH, key molecules for further energy conversion in the plant cell.
Water participates directly in the light reactions of photosynthesis by donating electrons to photosystem II during the process of photolysis. These electrons are used to replace the ones lost by chlorophyll when it absorbs light energy, allowing the photosystem to continue absorbing light and generating ATP and NADPH for the Calvin cycle.
Electrons move from Photosystem II to Photosystem I through a series of electron carrier molecules in the thylakoid membrane, known as the electron transport chain. During photosynthesis, light energy is used to transfer electrons along this chain, creating a proton gradient that drives ATP synthesis. This process is essential for the production of energy-rich molecules in the form of ATP and NADPH.
ADP takes on energy and a phosphate to produce ATP in photosystem II.
In photosystem I, electrons get their energy from the absorption of light by chlorophyll molecules. When light is absorbed, it excites the electrons in the chlorophyll, allowing them to move through a series of electron carriers in the photosystem to generate energy for the production of ATP and NADPH during photosynthesis.
From energy in photons