Your grammar for this question is not very good however, I believe I can answer your question.
If they do get change so they can only survive in a certain condition in a laboratory, I would most likely be to make the bacteria not able to survive Outside the lab. In other words, they don't want it getting out. This would be because they usually give the bacteria a resistance to certain antibacterial solutions so that when they cultivate he bacteria, the bacteria that did not accept the plasmid will die from the antibiotic that got mixed into the Agar. In other words, the only bacteria that would grow are the bacteria have accepted the plasmid.
Bacteria can be transformed with recombinant plasmid by introducing the plasmid into the bacterial cell through a process called transformation. This allows the bacteria to take up the recombinant DNA from the plasmid and express the desired gene or trait encoded in the DNA.
Bacterial cells are useful in recombinant DNA technology because they can easily take up foreign DNA through a process called transformation. Once the foreign DNA is inserted into a bacterial cell, it can be replicated and amplified quickly. Bacteria are also easy to culture and manipulate in the laboratory, making them ideal for producing large quantities of recombinant proteins or DNA fragments.
To culture bacteria effectively in the laboratory, follow these steps: Prepare a sterile growth medium with nutrients for the bacteria to grow. Inoculate the medium with a small sample of bacteria. Incubate the culture at the optimal temperature and conditions for the specific bacteria. Monitor the growth of the bacteria by observing changes in the culture. Use proper aseptic techniques to prevent contamination. Regularly subculture the bacteria to maintain a healthy and active culture.
Bacteria are used in recombinant DNA technology as hosts for inserting, replicating, and expressing foreign DNA. Their rapid growth, ease of manipulation, and ability to produce proteins make them ideal organisms for large-scale production of recombinant proteins like insulin or vaccines. Additionally, bacteria can be genetically modified to serve as living factories for the synthesis of valuable compounds.
Bacteria are used in recombinant DNA technology because they can easily take up and replicate recombinant DNA molecules. This makes them useful for producing large quantities of specific genes or proteins of interest. Additionally, bacteria have simple growth requirements and reproduce quickly, making them cost-effective for research and production purposes.
Recombinant pharmaceuticals are proteins or other molecules produced through genetic engineering techniques. They are created by inserting genes into host cells, such as bacteria or yeast, which then produce the desired protein. These recombinant products are used in medicine to treat a variety of diseases and conditions.
A recombinant sequence of DNA is a sequence of DNA that comes from more than one source. Examples of recombinant DNA are plasmids that are put into bacteria. The plasmid comes from the bacteria (or a bacteria at least) but a target gene has been added (say the lac operon gene that allows bacteria to thrive on lactose), this plasmid is now a recombinant DNA sequence.
Bacteria can be transformed with recombinant plasmid by introducing the plasmid into the bacterial cell through a process called transformation. This allows the bacteria to take up the recombinant DNA from the plasmid and express the desired gene or trait encoded in the DNA.
Bacteria can grow in the laboratory because the conditions provided are optimal for their growth, such as a nutrient-rich environment, suitable temperature, and pH levels. In nature, bacteria may face competing organisms or adverse conditions that limit their growth, whereas in the laboratory, these limiting factors are controlled or removed.
Recombinant DNA is replicated using host cells, typically bacteria or yeast, that have been engineered to contain the desired DNA sequence. These host cells are then grown in a lab setting under specific conditions that allow for the replication of the recombinant DNA. The cell division process allows for the production of multiple copies of the recombinant DNA.
A recombinant protein is a protein that is derived from recombinant DNA.Using recombinant DNA and inserting it to a plasmid of rapidly reproducing bacteria enables the manufacture of recombinant protein. These recombinant proteins can be variety of types, the can be Antibodies, antigens, hormones and enzymes.
Bacteria reproduce very quickly.
Bacteria reproduce very quickly.
A common method to introduce recombinant DNA into bacteria is through a process called transformation. In this process, bacteria are made competent to take up foreign DNA, usually through chemical treatment or electroporation. Once inside the bacteria, the recombinant DNA can replicate and be expressed.
recombinant technology
recombinant DNA technolog- apex
The process by which bacteria receive and express recombinant plasmid DNA is called transformation. In the case of recombinant viral DNA, the process often involves transduction, where a virus introduces foreign DNA into a bacterial cell. Both processes enable bacteria to acquire new genetic traits, which can include antibiotic resistance or the ability to produce proteins of interest.