No. DECREASING Cytoplasmic pH would decrease the rate of sucrose transport into the cell.
Sucrose likely entered the cells through a process called facilitated diffusion, which involves the use of specific carrier proteins to transport the molecule across the cell membrane. The carrier proteins help move the sucrose down its concentration gradient into the cells without requiring energy input from the cell.
Yes, sucrose is actively loaded into sieve tubes by companion cells that pump sucrose from the photosynthetic cells into the sieve tubes. This process requires energy and allows for long-distance transport of sucrose through the phloem.
Outside the cell is high concentration of hydrogen ions and low concentration of sucrose. Inside, is the opposite, low concentration of hydrogen ions, and high concentrations of sucrose. Cells use ATP to pump a hydrogen ion across the cell membrane, against the concentration gradient, and when the hydrogen ion goes to re-enter, it goes through a Sucrose-proton cotransporter. This means that the hydrogen ion (proton) take a sucrose molecule with it when it goes though the membrane.
The permeability of potato cytoplasm to water molecules is high, allowing water to easily move in and out of the cell. However, the permeability to sucrose molecules is lower, as they require specific transport proteins to pass through the cell membrane. This difference in permeability affects how sucrose and water move across the cell membrane in potatoes.
Phloem tubes are responsible for transporting food, mainly in the form of sucrose, downward from the leaves to other parts of the plant. These tubes run parallel to xylem tubes, which transport water and minerals.
Active Transport
source to sink
Sucrose likely entered the cells through a process called facilitated diffusion, which involves the use of specific carrier proteins to transport the molecule across the cell membrane. The carrier proteins help move the sucrose down its concentration gradient into the cells without requiring energy input from the cell.
Plants use an ekectrogenic pump, a proton pump and a con transport protein to load sucrose. The sucrose is produced by photosynthesis that turn into specialized cells in the veins of their leaves.
Yes, sucrose is actively loaded into sieve tubes by companion cells that pump sucrose from the photosynthetic cells into the sieve tubes. This process requires energy and allows for long-distance transport of sucrose through the phloem.
Increasing sucrose concentration in food can enhance sucrase activity up to a certain point, as sucrase is an enzyme that catalyzes the hydrolysis of sucrose into glucose and fructose. However, if sucrose levels become excessively high, the enzyme may become saturated, leading to a plateau in activity where further increases in sucrose do not result in increased reaction rates. Additionally, high sucrose concentrations could potentially lead to enzyme denaturation or inhibition, negatively impacting sucrase functionality. Overall, there is an optimal range for sucrose concentration where sucrase activity is maximized.
Outside the cell is high concentration of hydrogen ions and low concentration of sucrose. Inside, is the opposite, low concentration of hydrogen ions, and high concentrations of sucrose. Cells use ATP to pump a hydrogen ion across the cell membrane, against the concentration gradient, and when the hydrogen ion goes to re-enter, it goes through a Sucrose-proton cotransporter. This means that the hydrogen ion (proton) take a sucrose molecule with it when it goes though the membrane.
NaCl dissociates into two ions in water, increasing the number of solute particles and lowering the freezing point more than sucrose, which does not dissociate into ions. This difference in dissociation behavior leads to NaCl causing a greater decrease in freezing point compared to sucrose.
C12H22O11 is the chemical formula for sucrose, a disaccharide commonly found in plants. Sucrose is a form of sugar that serves as a major energy source in many organisms and is often used as a transport form of carbohydrates.
For yeast invertase, the cytoplasmic form is 135kDa. The excreted form is 270kDa due to heavy glycosylation
Change in mass depends on the concentration of sucrose within the dialysis bags. If the concentration of sucrose is greater inside the bag than outside, then water will move into the bag. If the concentration of sucrose is lower inside the bag than outside, then water will move out of the bag.
This is because the potato, which is mostly water, is in a hypertonic solution (a solution with less water and more solute --here, sucrose-- than the potato). Since the solutions want to reach equilibrium (equal amounts of sucrose and water in both the solution and the potato), water diffuses out of the potato and sucrose diffuses into it. The potato loses its water weight, and sucrose doesn't replace the weight lost, the potato weighs less.