The yacht "R N' R Forever" is owned by the prominent American businessman and philanthropist, Bill McGlashan. He is known for his work in private equity and impact investing. The yacht is often associated with luxury and has been featured in various media for its opulent design and amenities.
Usher, the renowned R&B singer and songwriter, owns a luxury yacht named "Usher." The yacht reflects his personal style and wealth, featuring modern amenities and opulent design. While specific details about the yacht may change, it is primarily associated with Usher's lifestyle and success in the music industry.
E t e r n i t y e n d l e s s
Automated trash pickup, often associated with robotic or automated systems for waste collection, does not have a single inventor. Various innovations in waste management technology have emerged over the years, with contributions from multiple companies and engineers. Notably, systems like the Automated Waste Collection System (AWCS) were developed in the 1960s by Swedish engineer Sten M. H. S. M. C. O. J. W. K. B. N. H. H. H. K. R. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. K. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R. N. H. R.
nCr + nCr-1 = n!/[r!(n-r)!] + n!/[(r-1)!(n-r+1)!] = n!/[(r-1)!(n-r)!]*{1/r + 1/n-r+1} = n!/[(r-1)!(n-r)!]*{[(n-r+1) + r]/[r*(n-r+1)]} = n!/[(r-1)!(n-r)!]*{(n+1)/r*(n-r+1)]} = (n+1)!/[r!(n+1-r)!] = n+1Cr
n p =n!/(n-r)! r and n c =n!/r!(n-r)! r
This browser is totally bloody useless for mathematical display but...The probability function of the binomial distribution is P(X = r) = (nCr)*p^r*(1-p)^(n-r) where nCr =n!/[r!(n-r)!]Let n -> infinity while np = L, a constant, so that p = L/nthenP(X = r) = lim as n -> infinity of n*(n-1)*...*(n-k+1)/r! * (L/n)^r * (1 - L/n)^(n-r)= lim as n -> infinity of {n^r - O[(n)^(k-1)]}/r! * (L^r/n^r) * (1 - L/n)^(n-r)= lim as n -> infinity of 1/r! * (L^r) * (1 - L/n)^(n-r) (cancelling out n^r and removing O(n)^(r-1) as being insignificantly smaller than the denominator, n^r)= lim as n -> infinity of (L^r) / r! * (1 - L/n)^(n-r)Now lim n -> infinity of (1 - L/n)^n = e^(-L)and lim n -> infinity of (1 - L/n)^r = lim (1 - 0)^r = 1lim as n -> infinity of (1 - L/n)^(n-r) = e^(-L)So P(X = r) = L^r * e^(-L)/r! which is the probability function of the Poisson distribution with parameter L.
Combinations of r from n without replacement is c(n,r) = n!/(n-r)!r! c(n,r) = 23!/20!3! c(n,r) = 1771.
nCr=n!/(r!(n-r)!)
julian r. geiger
n(n-r)/r
P(n,r)=(n!)/(r!(n-r)!)This would give you the number of possible permutations.n factorial over r factorial times n minus r factorial
If you have n objects and you are choosing r of them, then there are nCr combinations. This is equal to n!/( r! * (n-r)! ).