answersLogoWhite

0

Yes, a Fourier series represents a periodic function. It decomposes a periodic function into a sum of sine and cosine terms, each of which has a specific frequency. The resulting series will also be periodic, with the same period as the original function. If the original function is not periodic, it can still be approximated by a Fourier series over a finite interval, but the series itself will exhibit periodic behavior.

User Avatar

AnswerBot

4d ago

What else can I help you with?

Related Questions

In Fourier transformation and Fourier series which one follows periodic nature?

The Fourier series can be used to represent any periodic signal using a summation of sines and cosines of different frequencies and amplitudes. Since sines and cosines are periodic, they must form another periodic signal. Thus, the Fourier series is period in nature. The Fourier series is expanded then, to the complex plane, and can be applied to non-periodic signals. This gave rise to the Fourier transform, which represents a signal in the frequency-domain. See links.


Can every function be expanded in fouriers series?

no every function cannot be expressed in fourier series... fourier series can b usd only for periodic functions.


What is fourier series?

Consider a periodic function, generally defined by f(x+t) = f(x) for some t. Any periodic function can be written as an infinite sum of sines and cosines. This is called a Fourier series.


What has the author David Anton Frederick Robinson written?

David Anton Frederick Robinson has written: 'Fourier expansions of pseudo-doubly periodic functions and applications' -- subject(s): Fourier series, Periodic functions


Why cannot aperiodic signal be represented using fourier series?

An aperiodic signal cannot be represented using fourier series because the definition of fourier series is the summation of one or more (possibly infinite) sine wave to represent a periodicsignal. Since an aperiodic signal is not periodic, the fourier series does not apply to it. You can come close, and you can even make the summation mostly indistinguishable from the aperiodic signal, but the math does not work.


What are Joseph Fourier's works?

Fourier series and the Fourier transform


What are the limitation of fourier series?

what are the limitations of forier series over fourier transform


Difference between power series and fourier power series?

A power series is a series of the form ( \sum_{n=0}^{\infty} a_n (x - c)^n ), representing a function as a sum of powers of ( (x - c) ) around a point ( c ). In contrast, a Fourier power series represents a periodic function as a sum of sine and cosine functions, typically in the form ( \sum_{n=-\infty}^{\infty} c_n e^{i n \omega_0 t} ), where ( c_n ) are Fourier coefficients and ( \omega_0 ) is the fundamental frequency. While power series are generally used for functions defined on intervals, Fourier series specifically handle periodic functions over a defined period.


Discontinuous function in fourier series?

yes a discontinuous function can be developed in a fourier series


What is Fourier transformation?

Fourier transform. It is a calculation by which a periodic function is split up into sine waves.


Can a discontinuous function can be developed in the Fourier series?

Yes. For example: A square wave has a Fourier series.


What is physical significance of Fourier series?

Fourier series is series which help us to solve certain physical equations effectively