Yes, a Fourier series represents a periodic function. It decomposes a periodic function into a sum of sine and cosine terms, each of which has a specific frequency. The resulting series will also be periodic, with the same period as the original function. If the original function is not periodic, it can still be approximated by a Fourier series over a finite interval, but the series itself will exhibit periodic behavior.
A power series is a series of the form ( \sum_{n=0}^{\infty} a_n (x - c)^n ), representing a function as a sum of powers of ( (x - c) ) around a point ( c ). In contrast, a Fourier power series represents a periodic function as a sum of sine and cosine functions, typically in the form ( \sum_{n=-\infty}^{\infty} c_n e^{i n \omega_0 t} ), where ( c_n ) are Fourier coefficients and ( \omega_0 ) is the fundamental frequency. While power series are generally used for functions defined on intervals, Fourier series specifically handle periodic functions over a defined period.
It can be used in function approximation, especially in physics and numerical analysis and system & signals. Actually, the essence is that the basis of series is orthorgonal.
yes
Colour is a property that is not a periodic function.
no.
The Fourier series can be used to represent any periodic signal using a summation of sines and cosines of different frequencies and amplitudes. Since sines and cosines are periodic, they must form another periodic signal. Thus, the Fourier series is period in nature. The Fourier series is expanded then, to the complex plane, and can be applied to non-periodic signals. This gave rise to the Fourier transform, which represents a signal in the frequency-domain. See links.
no every function cannot be expressed in fourier series... fourier series can b usd only for periodic functions.
Consider a periodic function, generally defined by f(x+t) = f(x) for some t. Any periodic function can be written as an infinite sum of sines and cosines. This is called a Fourier series.
David Anton Frederick Robinson has written: 'Fourier expansions of pseudo-doubly periodic functions and applications' -- subject(s): Fourier series, Periodic functions
An aperiodic signal cannot be represented using fourier series because the definition of fourier series is the summation of one or more (possibly infinite) sine wave to represent a periodicsignal. Since an aperiodic signal is not periodic, the fourier series does not apply to it. You can come close, and you can even make the summation mostly indistinguishable from the aperiodic signal, but the math does not work.
Fourier series and the Fourier transform
what are the limitations of forier series over fourier transform
A power series is a series of the form ( \sum_{n=0}^{\infty} a_n (x - c)^n ), representing a function as a sum of powers of ( (x - c) ) around a point ( c ). In contrast, a Fourier power series represents a periodic function as a sum of sine and cosine functions, typically in the form ( \sum_{n=-\infty}^{\infty} c_n e^{i n \omega_0 t} ), where ( c_n ) are Fourier coefficients and ( \omega_0 ) is the fundamental frequency. While power series are generally used for functions defined on intervals, Fourier series specifically handle periodic functions over a defined period.
yes a discontinuous function can be developed in a fourier series
Fourier transform. It is a calculation by which a periodic function is split up into sine waves.
Yes. For example: A square wave has a Fourier series.
Fourier series is series which help us to solve certain physical equations effectively