The reflexive property, which is a property of all equivalence relations. Two other properties, besides reflexivity, of equivalence relations are: symmetry and transitivity.
Decided and reached are past tense.
the second derivative at an inflectiion point is zero
linear
Because calculus applications are almost infinite. In fact, every branch of science uses calculus : physics, chemistry, biology, social studies, economics, etc. Calculus is a universal language that can be used to answer bunches of questions. Using calculus, you can solve various problems including the acceleration of planets in orbit, the kinetic energy of a car in motion, the equivalence point of a chemical reaction, the maximal profit a business can make, the lenght of any curved figure or the area and volume of eccentrical shapes, the electric field produced by a charged object, ... Calculus is interesting because you can use it everywhere!
When the equivalence point is reached in a titration, the color of Fe2 changes because it reacts with the titrant to form a different colored compound.
The equivalence point is reached in a titration when the moles of acid are equal to the moles of base added. At the equivalence point, the pH of the solution is at its maximum or minimum value, depending on whether a strong acid or base is used in the titration.
To find the equivalence point of a titration, you can use an indicator that changes color at the pH of the equivalence point, or use a pH meter to monitor the pH as the titrant is added. The equivalence point is reached when the moles of acid and base are equal, indicating complete neutralization.
Continuing the titration after the equivalence point allows for the detection of excess titrant in the solution. This helps to ensure that the exact amount of titrant required to reach the equivalence point has been added. It also allows for a more accurate determination of the endpoint of the titration.
To find the equivalence point in a titration experiment, one can use an indicator that changes color at the pH of the equivalence point. Alternatively, a pH meter can be used to monitor the pH of the solution during the titration. The equivalence point is reached when the amount of titrant added is stoichiometrically equivalent to the amount of analyte present.
The equivalence point in a titration process can be determined by monitoring the pH level of the solution being titrated. The equivalence point is reached when the pH suddenly changes, indicating that the amount of titrant added is stoichiometrically equivalent to the amount of analyte present. This sudden change in pH is known as the endpoint of the titration.
The pH at the second equivalence point in a titration is typically around 9 to 10.
Endpoint titration refers to the point in a titration where the indicator changes color, signaling that the reaction is complete. Equivalence point, on the other hand, is the point in the titration where the moles of the titrant are stoichiometrically equal to the moles of the analyte. The equivalence point does not necessarily coincide with the endpoint, as the indicator may change color before or after reaching the equivalence point.
No, the equivalence point of a titration is not always zero. The equivalence point is the point in a titration where the amount of titrant added is stoichiometrically equivalent to the amount of analyte present in the sample, leading to a neutralization reaction. The pH at the equivalence point depends on the nature of the reaction and the strengths of the acid and base involved.
The equivalence point in a titration curve is where the amount of titrant added is stoichiometrically equivalent to the amount of analyte present. This point signifies the completion of the reaction. To accurately find the equivalence point during a titration process, one can use an indicator that changes color at or near the equivalence point, or use a pH meter to monitor the pH changes in the solution. Additionally, one can perform a titration with a known concentration of titrant to determine the equivalence point more precisely.
The equivalence point is the point in a titration when the amount of added standard reagent is chemically equal to the amount of analyte. The end point is the point in a titration when a physical change occurring immediate after the equivalence point
when the equivalence point of a titration is achieved.. Added: (More precisely:) The equivalence point is the point where the number of moles of base equal the number of moles of acid. The end point is the point where the indicator being used changes color (also 'indication point)'. If the indicator is chosen correctly, the end point will essentially be exactly as near as possible at the equivalence point. The point of the titration is to find the equivalence point -- the end point is just a very close approximation to it. This is because the pH of the solution changes very rapidly close to the equivalence point. Therefore, the indicator will change color very close to the equivalence point because of the steepness of the pH change