It can be beause when polar bonds form, they gather with other bonds.
Molecular polarity is determined by the overall arrangement of polar bonds within a molecule. If a molecule has polar bonds that are arranged symmetrically, the molecule is nonpolar. However, if the polar bonds are arranged asymmetrically, the molecule is polar. Therefore, the relationship between molecular polarity and bond polarity is that the presence and arrangement of polar bonds within a molecule determine its overall polarity.
No, not all compounds with polar covalent bonds are polar molecules. Whether a molecule is polar or nonpolar depends on its overall symmetry and the arrangement of its polar bonds within the molecule. In some cases, the polarities of individual bonds may cancel out, resulting in a nonpolar molecule.
The relationship between bond polarity and molecular polarity is that the overall polarity of a molecule is determined by the polarity of its individual bonds. If a molecule has polar bonds that are not symmetrical, the molecule will be polar overall. If a molecule has nonpolar bonds or symmetrical polar bonds that cancel each other out, the molecule will be nonpolar overall.
Yes, a CS2 molecules contains two double covalent bonds.
No, not necessarily. It all depends on the symmetry of the molecule. Take a look at Carbon dioxide. It has a linear shape like this : O=C=O Although the bonds are obviously polar, the molecule is symmetrical. This makes the polarities of the bonds "cancel" each other, so to speak. So overall, this molecule is non-polar. If you take a look at Hydrogen chloride, on the other hand, it has a shape like this: H-Cl The molecule is assymmetrical, so this is a polar molecule.
when the molecule contains polar bonds
It is a polar molecule and has polar bonds.
Yes, water has polar bonds, and is a very polar molecule.
No. Carbon dioxide has polar bonds, but the molecule as a whole is nonpolar because it is symmetric.
Molecular polarity is determined by the overall arrangement of polar bonds within a molecule. If a molecule has polar bonds that are arranged symmetrically, the molecule is nonpolar. However, if the polar bonds are arranged asymmetrically, the molecule is polar. Therefore, the relationship between molecular polarity and bond polarity is that the presence and arrangement of polar bonds within a molecule determine its overall polarity.
Water molecules are polar molecules. Both of the bonds inside the molecule are polar bonds.
No, not all compounds with polar covalent bonds are polar molecules. Whether a molecule is polar or nonpolar depends on its overall symmetry and the arrangement of its polar bonds within the molecule. In some cases, the polarities of individual bonds may cancel out, resulting in a nonpolar molecule.
The relationship between bond polarity and molecular polarity is that the overall polarity of a molecule is determined by the polarity of its individual bonds. If a molecule has polar bonds that are not symmetrical, the molecule will be polar overall. If a molecule has nonpolar bonds or symmetrical polar bonds that cancel each other out, the molecule will be nonpolar overall.
when the molecule contains polar bonds
when the molecule contains polar bonds
when the molecule contains polar bonds
Yes, a CS2 molecules contains two double covalent bonds.