This solution is acidic.
A solution with a pH of 2 is less acidic than a solution with a pH of 1. The pH scale is logarithmic, so each unit change represents a tenfold difference in acidity. Therefore, a solution with a pH of 1 is 10 times more acidic than a solution with a pH of 2.
The pH of dilute NH4OH(aq) solutions varies depending on concentration. Generally, a 0.1 M solution of NH4OH has a pH around 10-11, while a 1 M solution has a pH closer to 11-12. Higher concentrations of NH4OH will result in higher pH values.
A solution with pH 1 is 10 times stronger (more acidic) than a solution with pH 2. This is because pH is measured on a logarithmic scale, with each unit representing a tenfold difference in concentration of hydrogen ions.
A solution with a pH of 2 is ten times less acidic than a solution with a pH of 1, not half as acidic. pH is a logarithmic scale, so each unit change represents a tenfold difference in the concentration of hydrogen ions.
To first answer this question you must know how the PH scale works. Essentially the PH scale is a logarithmic scale. A logarithmic scale unlike a linear scale (you know the scales that go from 1, 2, 3, etc.) works using exponential increments. For the PH scale every time you go one number down the solution the item in question becomes ten times more acidic than the number above. Therefore to ultimately answer your question a solution with a PH of 1 is ten times more acidic than a solution that has a PH of 2.
One possibility is a 10% solution of hydrochloric acid.
A solution with a pH of 2 is less acidic than a solution with a pH of 1. The pH scale is logarithmic, so each unit change represents a tenfold difference in acidity. Therefore, a solution with a pH of 1 is 10 times more acidic than a solution with a pH of 2.
The pH of dilute NH4OH(aq) solutions varies depending on concentration. Generally, a 0.1 M solution of NH4OH has a pH around 10-11, while a 1 M solution has a pH closer to 11-12. Higher concentrations of NH4OH will result in higher pH values.
A solution with pH 1 is 10 times stronger (more acidic) than a solution with pH 2. This is because pH is measured on a logarithmic scale, with each unit representing a tenfold difference in concentration of hydrogen ions.
A solution with a pH of 2 is ten times less acidic than a solution with a pH of 1, not half as acidic. pH is a logarithmic scale, so each unit change represents a tenfold difference in the concentration of hydrogen ions.
To first answer this question you must know how the PH scale works. Essentially the PH scale is a logarithmic scale. A logarithmic scale unlike a linear scale (you know the scales that go from 1, 2, 3, etc.) works using exponential increments. For the PH scale every time you go one number down the solution the item in question becomes ten times more acidic than the number above. Therefore to ultimately answer your question a solution with a PH of 1 is ten times more acidic than a solution that has a PH of 2.
100
The pH of a solution can be calculated using the formula pH = -log[H+]. Given that the hydronium ion concentration is 10^-1 M, the pH of the solution is pH = -log(10^-1) = 1. So, the pH of the solution is 1.
A solution of HCl is highly dissociated into ions, A 0.000001 M solution (1 x 10-6) has a pH of 6 ... close to neutral. A 0.001 M solution (1 x 10-3) has a pH of 3 ... more concenterated, but still not a really concentrated solution. A 0.1 M solution (1 x 10-1) has a pH of 1 ... even more concentrated. showing it is more acidic.
A pH range of 1-7 indicates acidic conditions. A pH of 1 is highly acidic, while a pH of 7 is neutral. Substances with a pH in this range will have a higher concentration of H+ ions compared to OH- ions.
A pH of 1 is stronger (more acidic) than a pH of 4. Each whole number change in pH represents a tenfold change in the acidity or alkalinity of a solution. Therefore, a solution with a pH of 1 is ten times more acidic (has a higher hydrogen ion concentration) than a solution with a pH of 2, and 100 times more acidic than a solution with a pH of 4.
pH 1 is considered strong because it indicates a highly acidic solution. pH measures the concentration of hydrogen ions in a solution, and a pH of 1 means there is a high concentration of hydrogen ions, making the solution very acidic.