answersLogoWhite

0

Mie scattering and Rayleigh scattering are both processes that cause light to scatter, but they differ in how they affect the scattering of light. Mie scattering occurs when particles are larger than the wavelength of light, leading to more uniform scattering in all directions. On the other hand, Rayleigh scattering occurs when particles are smaller than the wavelength of light, causing more intense scattering in the forward direction and less in other directions.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Continue Learning about Chemistry

What are the key differences between Rayleigh scattering and Mie scattering in the context of atmospheric phenomena?

Rayleigh scattering occurs when particles are much smaller than the wavelength of light, causing shorter wavelengths (blue light) to scatter more. Mie scattering happens when particles are similar in size to the wavelength of light, causing all wavelengths to scatter equally. In the atmosphere, Rayleigh scattering is responsible for the blue color of the sky and the red colors of sunrise and sunset, while Mie scattering is more prominent in hazy or polluted conditions.


The scattering of light by colloids and susoenions is called the?

The scattering of light really is called scattering. If you are referring to a scattered reflection this can be called a diffuse reflection. Are you asking about different types of scattering such as Rayleigh scattering? Rayleigh scattering is an elastic type of scattering most well known for the blue color of the sky.


What is the difference between raman effect and flueroscence?

The Raman effect is the inelastic scattering of light by molecules, resulting in a shift in wavelength. Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. Both phenomena involve interactions between light and molecules but differ in the mechanism of light emission.


The scattering of light by colloids is called?

the scattering of light by colloids is known as tyndall effect. it is named after the scientist who discovered it.


If you took a white piece of plastic to a depth of 180 m what color would it appear?

At 180 meters depth, the color white appears blue due to light absorption and scattering in water, filtering out red wavelengths first. This phenomenon is known as Rayleigh scattering, where shorter blue wavelengths penetrate deeper than longer red wavelengths.

Related Questions

What are the differences between Raman scattering and Rayleigh scattering?

Raman scattering and Rayleigh scattering are both types of light scattering, but they differ in how they interact with molecules. Rayleigh scattering occurs when light interacts with particles smaller than the wavelength of light, causing the light to scatter in all directions. Raman scattering, on the other hand, involves a change in the energy of the scattered light due to interactions with molecular vibrations. This results in a shift in the wavelength of the scattered light, providing information about the molecular structure of the material.


What are the differences between Mie scattering and Rayleigh scattering in terms of their effects on light propagation through a medium?

Mie scattering occurs when particles are larger than the wavelength of light, causing light to scatter in all directions. Rayleigh scattering occurs when particles are smaller than the wavelength of light, causing shorter wavelengths to scatter more than longer wavelengths. Mie scattering results in a more uniform scattering pattern, while Rayleigh scattering causes blue light to scatter more than red light, leading to the sky appearing blue.


What are the differences between Rayleigh scattering and Mie scattering in terms of their effects on the scattering of light?

Rayleigh scattering occurs when light interacts with particles much smaller than the wavelength of light, causing shorter wavelengths (like blue and violet) to scatter more than longer wavelengths. Mie scattering, on the other hand, happens when light interacts with particles closer in size to the wavelength of light, causing all wavelengths to scatter equally.


How does Rayleigh scattering fluorescence contribute to the phenomenon of light scattering in the atmosphere?

Rayleigh scattering fluorescence is a process where molecules in the atmosphere absorb and re-emit light, causing the scattering of light in different directions. This phenomenon contributes to the overall scattering of light in the atmosphere, which is why the sky appears blue during the day.


What does the Rayleigh Scattering principle refer to in science?

The Rayleigh scattering principle is ascribed to the optical phenomenon that is associated by particles that are smaller than the wavelength of light. It was named after the British physicist Lord Rayleigh.


Why does the sky show blue in color?

The Rayleigh light scattering phenomenon.


What is rayleigh scattering?

Rayleigh scattering is the scattering of light by particles in the atmosphere that are much smaller than the wavelength of the light. This scattering is responsible for the blue color of the sky during the day and the red and orange hues of sunrise and sunset. The shorter wavelengths of light, such as blue and violet, are scattered more easily by the particles in the atmosphere, leading to the sky's blue appearance.


What are the differences between Mie scattering and Rayleigh scattering in terms of their effects on light propagation in the atmosphere?

Mie scattering occurs when particles are larger than the wavelength of light, causing light to scatter in all directions equally. This type of scattering is responsible for creating white light and is more prevalent in the lower atmosphere. Rayleigh scattering, on the other hand, occurs when particles are smaller than the wavelength of light, causing shorter wavelengths (blue and violet) to scatter more than longer wavelengths (red and orange). This type of scattering is responsible for the blue color of the sky and is more prevalent in the upper atmosphere.


What occurs when light changes direction after coiling with particles of matter?

When light changes direction after colliding with particles of matter, it undergoes a process known as scattering. Depending on the size of the particles relative to the wavelength of light, different types of scattering such as Rayleigh scattering or Mie scattering can occur, leading to effects like the blue sky or a red sunset.


Difference between rayleigh and mie scattering?

Rayleigh scattering occurs when particles are much smaller than the wavelength of light, leading to scattering in all directions and a strong dependency on the fourth power of the inverse of the wavelength. Mie scattering, on the other hand, involves particles that are similar in size to the wavelength of light, leading to scattering across a wide range of angles and less dependency on the wavelength.


What are the key differences between Rayleigh scattering and Mie scattering in the context of atmospheric phenomena?

Rayleigh scattering occurs when particles are much smaller than the wavelength of light, causing shorter wavelengths (blue light) to scatter more. Mie scattering happens when particles are similar in size to the wavelength of light, causing all wavelengths to scatter equally. In the atmosphere, Rayleigh scattering is responsible for the blue color of the sky and the red colors of sunrise and sunset, while Mie scattering is more prominent in hazy or polluted conditions.


The scattering of light by colloids and susoenions is called the?

The scattering of light really is called scattering. If you are referring to a scattered reflection this can be called a diffuse reflection. Are you asking about different types of scattering such as Rayleigh scattering? Rayleigh scattering is an elastic type of scattering most well known for the blue color of the sky.