Any reaction occur.
When sulfuric acid and potassium dichromate react in ethanol, they form chromium(III) sulfate, potassium sulfate, water, and carbon dioxide. This is a redox reaction where the dichromate ion is reduced to chromium(III) while sulfuric acid is acting as a catalyst. The products will vary depending on the specific conditions of the reaction.
Tartaric acid plus potassium carbonate react to form carbon dioxide gas.
it is because potassium hydroxide will react with carbon dioxide to form potassium carbonate and water. but potassium carbonate is soluble, so there will be no visible change to see if there is carbon dioxide emitted
Potassium hydroxide is used to absorb carbon dioxide produced by the green plant during respiration. By placing the potassium hydroxide in the experimental setup, any carbon dioxide released will be absorbed, preventing it from affecting the results of the experiment. This allows for the accurate measurement of how much carbon dioxide is produced by the plant during respiration.
The reaction between potassium dichromate and hydrochloric acid forms chromic chloride, chlorine gas, and water. This reaction is a redox reaction, as the potassium dichromate is reduced while the hydrochloric acid is oxidized.
When sulfuric acid and potassium dichromate react in ethanol, they form chromium(III) sulfate, potassium sulfate, water, and carbon dioxide. This is a redox reaction where the dichromate ion is reduced to chromium(III) while sulfuric acid is acting as a catalyst. The products will vary depending on the specific conditions of the reaction.
Tartaric acid plus potassium carbonate react to form carbon dioxide gas.
it is because potassium hydroxide will react with carbon dioxide to form potassium carbonate and water. but potassium carbonate is soluble, so there will be no visible change to see if there is carbon dioxide emitted
When solid potassium oxide (K2O) is added to a container of carbon dioxide (CO2) gas, a chemical reaction occurs. Potassium oxide reacts with carbon dioxide to form potassium carbonate (K2CO3). This reaction is a double displacement reaction, where the potassium from potassium oxide replaces the carbon in carbon dioxide, resulting in the formation of potassium carbonate. The balanced chemical equation for this reaction is: K2O + CO2 → K2CO3.
acetone does not react with potassium dichromate
Potassium hydroxide is used to absorb carbon dioxide produced by the green plant during respiration. By placing the potassium hydroxide in the experimental setup, any carbon dioxide released will be absorbed, preventing it from affecting the results of the experiment. This allows for the accurate measurement of how much carbon dioxide is produced by the plant during respiration.
The reaction between potassium dichromate and hydrochloric acid forms chromic chloride, chlorine gas, and water. This reaction is a redox reaction, as the potassium dichromate is reduced while the hydrochloric acid is oxidized.
Tartaric acid and potassium carbonate react to form potassium bitartrate (cream of tartar), water, and carbon dioxide gas.
Yes, potassium carbonate (K2CO3) will react with hydrochloric acid (HCl) to form potassium chloride (KCl), carbon dioxide (CO2), and water (H2O) in a double displacement reaction.
This is a mixture of 2K+ and Cr2O72- ions in strong sulfuric acid, made from potassium chromate.2CrO4- + 2H+ ----> Cr2O72- + H2Ochromate-yellow -> dichromate-orangeNote:Potassium ions do NOT react, they are tribune-ions
Carbon dioxide is produced when acids react with carbonates. This chemical reaction results in the formation of water, a salt, and carbon dioxide gas.
Yes, carbon can react with acids to form carbon dioxide gas and water.