pKa= pH - log(A/HA)
to clarify -log is subtract log
E.g A buffer is prepared by adding .15 M of NaOH and .1 of a weak acid, HA. If the pH of the buffer is 8.15, what is the pKa of the acid?
pH= 8.15 - log .15/.1
= 7.97
HA ==> H+ + A-Ka = [H+][A-][HA] and from pH = 2.31, calculated [H+] = 4.89x10^-3 M Ka = (4.89x10^-3)(4.89x10^-3)/0.012 Ka = 1.99x10^-3 pKa = 2.70
A pKa value is a measurement used for bases and acids. The measurement pH applies to hydronium ion concentrations that are in a solution, whereas pKa only applies to determining the amount of dissociation an acid wants to do in a solution.
the pH of ethanol can be calculated using its pKa value (pKa 15.9) and the Henderson-Hasselbalch equation. pH = pKa - log [AH/A] where [AH/A] the ratio of disassociated versus undisassociated species in solution.
To calculate the pH of a buffer solution, you can use the Henderson-Hasselbalch equation, which is pH pKa log(A-/HA). Here, pKa is the negative logarithm of the acid dissociation constant, A- is the concentration of the conjugate base, and HA is the concentration of the weak acid in the buffer solution. By plugging in these values, you can determine the pH of the buffer solution.
To calculate the pH of a buffer solution, you can use the Henderson-Hasselbalch equation, which is pH pKa log(A-/HA), where pKa is the negative logarithm of the acid dissociation constant, A- is the concentration of the conjugate base, and HA is the concentration of the weak acid in the buffer solution.
HA ==> H+ + A-Ka = [H+][A-][HA] and from pH = 2.31, calculated [H+] = 4.89x10^-3 M Ka = (4.89x10^-3)(4.89x10^-3)/0.012 Ka = 1.99x10^-3 pKa = 2.70
A pKa value is a measurement used for bases and acids. The measurement pH applies to hydronium ion concentrations that are in a solution, whereas pKa only applies to determining the amount of dissociation an acid wants to do in a solution.
the pH of ethanol can be calculated using its pKa value (pKa 15.9) and the Henderson-Hasselbalch equation. pH = pKa - log [AH/A] where [AH/A] the ratio of disassociated versus undisassociated species in solution.
To calculate the pH of a buffer solution, you can use the Henderson-Hasselbalch equation, which is pH pKa log(A-/HA). Here, pKa is the negative logarithm of the acid dissociation constant, A- is the concentration of the conjugate base, and HA is the concentration of the weak acid in the buffer solution. By plugging in these values, you can determine the pH of the buffer solution.
To calculate the pH of a buffer solution, you can use the Henderson-Hasselbalch equation, which is pH pKa log(A-/HA), where pKa is the negative logarithm of the acid dissociation constant, A- is the concentration of the conjugate base, and HA is the concentration of the weak acid in the buffer solution.
To calculate the pH of a buffer solution, you can use the Henderson-Hasselbalch equation, which is pH pKa log(A-/HA). Here, pKa is the negative logarithm of the acid dissociation constant, A- is the concentration of the conjugate base, and HA is the concentration of the weak acid. By plugging in these values, you can determine the pH of the buffer solution.
The pH of a buffer solution is calculated using the Henderson-Hasselbalch equation, which is pH pKa log(A-/HA), where pKa is the negative logarithm of the acid dissociation constant, A- is the concentration of the conjugate base, and HA is the concentration of the weak acid.
This question does not make very much sense but it will somewhat be answered. PH is the measurement of a concentration of hydronium ions in a solution. PKA is the measurement of how much is available. If the concentration and pka of a substance is known, the pH can be calculated.
Its an equation you can use to find the pH of a solution. it is.... --- pH = pKa + log (Base/Acid) --- these may help too Ka = 10^-pKa Kw = Ka*Kb
The buffer capacity increases as the concentration of the buffer solution increases and is a maximum when the pH is equal to the same value as the pKa of the weak acid in the buffer. A buffer solution is a good buffer in the pH range that is + or - 1 pH unit of the pKa. Beyond that, buffering capacity is minimal.
An acid in a base solution will ionize; a base in an acid will ionize. Like solutions do not ionize. When pKa is less than pH, around 99 percent to 100 percent of the drug will ionize.
If the pKa is 8.3, when Ka = 10^-pKa = 5.012*10^-9. Then, [H+]= sq. rt(Ka*C0). {C0 is the intial concentration of the acid}. [H+] = sq. rt[(5.012*10^-9)(0.05M)} = 1.58*10^-5 M Then, pH = -log[H+] pH = -log (1.58*10^-5M) = 4.8