0.2g Na2CO3 dissolved into 25ml DI Water.
Methyl Orange is used 2 to 3 drops is a indicator.
then we take normal solution of 0.02N H2SO4 in beurate .
note the volume consumed of H2SO4.
put these value in formula
formula
N H2SO4= wt of Na2CO3 * volume of Na2CO3 used/ 53 * volume of H2SO4 consumed
repeat this process
To prepare 0.25N sulphuric acid from 2N sulphuric acid, you can dilute the 2N solution by adding 7 parts of water to 1 part of the 2N solution. This will result in a final 0.25N sulphuric acid solution.
To prepare a 50 mM Sulphuric acid solution, you would need to calculate the required volume of concentrated Sulphuric acid (typically 96-98%) needed to dilute in water to achieve the desired concentration. You can use the formula: C1V1 = C2V2, where C1 is the concentration of the concentrated acid, V1 is the volume of concentrated acid needed, C2 is the desired concentration (50 mM), and V2 is the final volume of the solution you want to prepare.
The red petal indicator would likely turn blue in a solution of sulphuric acid because sulphuric acid is a strong acid that would cause the indicator to change color.
To prepare a nitrate test solution using diphenylamine in sulfuric acid, you can mix diphenylamine with concentrated sulfuric acid in a specific ratio. Typically, a 0.1% diphenylamine solution in concentrated sulfuric acid is used for nitrate testing. Follow safety precautions when working with concentrated sulfuric acid as it is corrosive.
To prepare 0.5 N sulfuric acid, you can mix 49 g of sulfuric acid (H2SO4) into enough water to make 1 liter of solution. This will give you a solution that has a concentration of 0.5 N, meaning it contains 0.5 moles of H2SO4 per liter of solution. Remember to always add acid to water slowly while stirring to avoid splashing and to ensure a safe preparation process.
To prepare 0.25N sulphuric acid from 2N sulphuric acid, you can dilute the 2N solution by adding 7 parts of water to 1 part of the 2N solution. This will result in a final 0.25N sulphuric acid solution.
To prepare a 50 mM Sulphuric acid solution, you would need to calculate the required volume of concentrated Sulphuric acid (typically 96-98%) needed to dilute in water to achieve the desired concentration. You can use the formula: C1V1 = C2V2, where C1 is the concentration of the concentrated acid, V1 is the volume of concentrated acid needed, C2 is the desired concentration (50 mM), and V2 is the final volume of the solution you want to prepare.
No. It is a mixture of sulphuric acid and water.
Zinc oxide cannot be used with sulphuric acid to prepare zinc sulphate. This is because zinc oxide is insoluble in sulphuric acid, and therefore, it would not react to form zinc sulphate.
write chemical equation for the reaction between viscose solution and sulphuric acid
The red petal indicator would likely turn blue in a solution of sulphuric acid because sulphuric acid is a strong acid that would cause the indicator to change color.
To prepare a nitrate test solution using diphenylamine in sulfuric acid, you can mix diphenylamine with concentrated sulfuric acid in a specific ratio. Typically, a 0.1% diphenylamine solution in concentrated sulfuric acid is used for nitrate testing. Follow safety precautions when working with concentrated sulfuric acid as it is corrosive.
Yes, it is dilute sulphuric acid.
The solution is colorless.
Yes. Sulfuric acid is a strong electrolyte.
To prepare 0.5 N sulfuric acid, you can mix 49 g of sulfuric acid (H2SO4) into enough water to make 1 liter of solution. This will give you a solution that has a concentration of 0.5 N, meaning it contains 0.5 moles of H2SO4 per liter of solution. Remember to always add acid to water slowly while stirring to avoid splashing and to ensure a safe preparation process.
One way to convert dilute sulphuric acid to concentrated sulphuric acid is through a process called evaporation. In this method, the dilute acid is heated to evaporate the water content, leaving behind the concentrated acid. Another method involves adding concentrated sulphuric acid to the dilute solution until the desired concentration is achieved.