Not sure what you mean by "how does it work," but Wikipedia has a very well written article on Specific Heat Capactiy. I'm sure it contains the information and explanantion you're looking for. See the web link.
The specific heat capacity of cake would vary depending on the ingredients used. Generally, foods with a higher water content have a specific heat capacity around 4.18 J/g°C, which is similar to the specific heat capacity of water. However, cakes can have additional ingredients like fats and sugars that can affect their specific heat capacity.
No, aluminum has a lower specific heat capacity than iron. The specific heat capacity of aluminum is about 0.90 J/g°C, while iron has a specific heat capacity of about 0.45 J/g°C.
The specific heat capacity of phosphorus is approximately 0.187 J/g°C.
The heat capacity of a lead sinker would depend on its specific heat capacity and overall mass. Lead has a specific heat capacity of 0.128 J/g°C, so the heat capacity of a 0.287g lead sinker can be calculated using the formula: Heat capacity = mass x specific heat capacity. In this case, the heat capacity would be 0.287g x 0.128 J/g°C = 0.0367 J/°C.
The heat capacity of xylose is 281 Jmol-1K-1.
The masses of the objects will affect the final temperature based on their specific heat capacities. If two objects with different masses and the same heat input have different specific heat capacities, the object with the lower specific heat capacity will tend to have a higher final temperature compared to the object with the higher specific heat capacity. This is because the object with the lower specific heat capacity requires less heat to raise its temperature.
specific heat capacity
Yes, stones have a high specific heat capacity because they can absorb and store a significant amount of heat energy before their temperature changes significantly. This makes stones useful for applications where heat retention is important, such as in stone ovens or thermal energy storage systems.
The specific heat capacity of cake would vary depending on the ingredients used. Generally, foods with a higher water content have a specific heat capacity around 4.18 J/g°C, which is similar to the specific heat capacity of water. However, cakes can have additional ingredients like fats and sugars that can affect their specific heat capacity.
The specific heat capacity of polyester is 2.35degrees
The specific heat capacity, density, and mass of a substance are properties that determine its heat capacity. Specific heat capacity is the amount of heat required to raise the temperature of one unit mass of the substance by one degree Celsius. Density and mass affect how much heat the substance can store and how quickly it can absorb or release heat.
No. Metals have a relatively low specific heat.
The type of material does not affect the amount of heat a body can store. The factors that affect the amount of heat a body can store include its mass, specific heat capacity, and temperature difference.
Three properties that affect thermal energy are temperature, specific heat capacity, and thermal conductivity. Temperature refers to the average kinetic energy of particles, specific heat capacity is the amount of heat needed to increase the temperature of a substance, and thermal conductivity determines how well a material can transfer heat.
What is the specific heat capacity of kno3
raising of object temperature, the mass, specific heat
Heat capacity is the total amount of heat energy required to raise the temperature of a substance by a given amount, while specific heat capacity is the amount of heat energy required to raise the temperature of a unit mass of a substance by one degree Celsius. Specific heat capacity is a property intrinsic to the substance, while heat capacity depends on the amount of the substance present. The heat capacity of a substance is the product of its specific heat capacity and its mass.