in our syllabus there is only the first and the zero order reaction in which if the graph is plotted between the concentration and time then it is a zero order reaction while if the graph is between the log of concentration and time then the reaction is of the first order.hope this will help u.
To prove graphically that a reaction is first order, you would plot the natural log of the concentration of the reactant versus time. If the resulting graph is linear, then the reaction is first order. This linear relationship indicates that the rate of the reaction is directly proportional to the concentration of the reactant.
The order of a reaction can be determined by conducting experiments where the concentration of reactants is varied and the rate of the reaction is measured. By analyzing how changes in concentration affect the rate, one can determine the order of the reaction with respect to each reactant.
To determine the reaction order from a table of experimental data, you can plot the concentration of the reactant versus time for each experiment. The reaction order is determined by the slope of the line on the graph. If the slope is constant, the reaction is first order. If the slope doubles, the reaction is second order. If the slope triples, the reaction is third order.
To determine the reaction order from concentration and time data, one can use the method of initial rates. By comparing the initial rates of the reaction at different concentrations of reactants, the reaction order can be determined based on how the rate changes with respect to the concentration of each reactant.
Stoichiometry only tells us the molar ratios of reactants and products in a balanced chemical equation, not the rate at which the reaction occurs. Reaction order is determined experimentally and can depend on factors such as reactant concentrations, temperature, and presence of catalysts. The rate law equation, which includes reaction order, is derived from experimental data and not solely from the stoichiometry of the reaction.
To prove graphically that a reaction is first order, you would plot the natural log of the concentration of the reactant versus time. If the resulting graph is linear, then the reaction is first order. This linear relationship indicates that the rate of the reaction is directly proportional to the concentration of the reactant.
The order of the photoelectric reaction is zero order because the rate of the reaction does not depend on the concentration of the reactants. The rate is solely determined by the intensity of the incident light.
The order of a reaction can be determined by conducting experiments where the concentration of reactants is varied and the rate of the reaction is measured. By analyzing how changes in concentration affect the rate, one can determine the order of the reaction with respect to each reactant.
To determine the reaction order from a table of experimental data, you can plot the concentration of the reactant versus time for each experiment. The reaction order is determined by the slope of the line on the graph. If the slope is constant, the reaction is first order. If the slope doubles, the reaction is second order. If the slope triples, the reaction is third order.
Graph both inequalities and the area shaded by both is the set of answers.
The order of a reaction with respect to ClO2 is determined by the exponent of ClO2 in the rate law expression. If the rate law is of the form rate = k[ClO2]^n, then the order with respect to ClO2 is n. This value can be determined experimentally by measuring how changes in the concentration of ClO2 affect the reaction rate. If the concentration of ClO2 does not appear in the rate law, then the order with respect to ClO2 is zero.
To determine the reaction order from concentration and time data, one can use the method of initial rates. By comparing the initial rates of the reaction at different concentrations of reactants, the reaction order can be determined based on how the rate changes with respect to the concentration of each reactant.
Stoichiometry only tells us the molar ratios of reactants and products in a balanced chemical equation, not the rate at which the reaction occurs. Reaction order is determined experimentally and can depend on factors such as reactant concentrations, temperature, and presence of catalysts. The rate law equation, which includes reaction order, is derived from experimental data and not solely from the stoichiometry of the reaction.
First-order kinetics refers to a reaction in which the rate is directly proportional to the concentration of one reactant. This means that the reaction proceeds at a speed determined by the concentration of the reactant involved, leading to a constant half-life. The rate constant for a first-order reaction has units of 1/time.
The molecularity of the rate-controlling step may not necessarily be the same as the overall reaction order. The rate-controlling step is determined by the slowest step in a reaction mechanism, while the overall reaction order is the sum of the individual reactant concentrations in the rate law equation. It is possible for the molecularity of the rate-controlling step to influence the overall reaction order, but they are not always directly correlated.
The zero order reaction rate law states that the rate of a chemical reaction is independent of the concentration of the reactants. This means that the rate of the reaction remains constant over time. The rate of the reaction is determined solely by the rate constant, which is specific to each reaction. This rate law is expressed as: Rate k, where k is the rate constant.
The value and unit of the rate constant for a reaction represent how fast the reaction occurs. The rate constant is typically denoted by the symbol "k" and its unit depends on the overall order of the reaction. The unit of the rate constant can be determined by the reaction rate equation.