answersLogoWhite

0

grams liquid x mol/g x H fusion

User Avatar

Wiki User

8y ago

What else can I help you with?

Continue Learning about Chemistry

How much energy is released when 1.56 kg of ethanol 46.0 g mol freezes The heat of fusion of ethanol is 4.94 kJ mol?

To calculate the energy released when 1.56 kg of ethanol freezes, first convert the mass of ethanol to moles using its molar mass. Then, use the heat of fusion of ethanol to determine the energy released using the formula: Energy released = moles of ethanol x heat of fusion.


How is the Hfusion used to calculate the energy released when a mass of liquid freezes?

Grams Liquid x mol/g x Hfusion


How is stoichiometry used to calculate energy released when a mass liquid freezes?

Stoichiometry can be used to determine the amount of heat energy released during the freezing of a liquid by relating the quantity of the substance that freezes to the heat of fusion of the substance. This involves multiplying the mass of the liquid that freezes by the heat of fusion value to calculate the total energy released. This calculation helps in understanding the energy changes that occur during phase transitions like freezing.


How is stoichiometry used to calculate energy released when I mass of liquid freezes?

Stoichiometry can be used to calculate the energy released during the freezing of a liquid by calculating the moles of the liquid that freeze and then using the enthalpy of fusion of the substance (given in kJ/mol) to determine the total energy released during the process. The energy released can be found by multiplying the moles of liquid that freeze by the enthalpy of fusion value.


How is stochiometry used to calculate energy released when a mass of liquid freezes?

Stoichiometry can be used to calculate the energy released when a mass of liquid freezes by accounting for the heat of fusion of the substance. By calculating the amount of heat energy required to freeze the liquid based on its specific heat capacity and mass, you can determine the energy released during the phase change. This can be expressed through the equation Q = m * h_f, where Q is the energy released, m is the mass of the substance, and h_f is the heat of fusion constant.

Related Questions

How is stoichemetry used to calculate energy released when a mass of liquid freezes?

Stoichiometry is used to calculate the energy released when a mass of liquid freezes by applying the concept of heat transfer during phase changes. The heat released can be determined using the formula ( Q = m \cdot \Delta H_f ), where ( Q ) is the heat energy, ( m ) is the mass of the liquid, and ( \Delta H_f ) is the enthalpy of fusion (the amount of energy released when the substance freezes). By knowing the mass of the liquid and its enthalpy of fusion, one can calculate the total energy released during the freezing process.


How much energy is released when 1.56 kg of ethanol 46.0 g mol freezes The heat of fusion of ethanol is 4.94 kJ mol?

To calculate the energy released when 1.56 kg of ethanol freezes, first convert the mass of ethanol to moles using its molar mass. Then, use the heat of fusion of ethanol to determine the energy released using the formula: Energy released = moles of ethanol x heat of fusion.


How is the Hfusion used to calculate the energy released when a mass of liquid freezes?

Grams Liquid x mol/g x Hfusion


How is stoichiometry used to calculate energy released when a mass liquid freezes?

Stoichiometry can be used to determine the amount of heat energy released during the freezing of a liquid by relating the quantity of the substance that freezes to the heat of fusion of the substance. This involves multiplying the mass of the liquid that freezes by the heat of fusion value to calculate the total energy released. This calculation helps in understanding the energy changes that occur during phase transitions like freezing.


How is stoichiometry used to calculate energy released when I mass of liquid freezes?

Stoichiometry can be used to calculate the energy released during the freezing of a liquid by calculating the moles of the liquid that freeze and then using the enthalpy of fusion of the substance (given in kJ/mol) to determine the total energy released during the process. The energy released can be found by multiplying the moles of liquid that freeze by the enthalpy of fusion value.


How is stochiometry used to calculate energy released when a mass of liquid freezes?

Stoichiometry can be used to calculate the energy released when a mass of liquid freezes by accounting for the heat of fusion of the substance. By calculating the amount of heat energy required to freeze the liquid based on its specific heat capacity and mass, you can determine the energy released during the phase change. This can be expressed through the equation Q = m * h_f, where Q is the energy released, m is the mass of the substance, and h_f is the heat of fusion constant.


How is stoichiometry used to calculate energy released when a mass of liquid freezes?

Grams liquid × mol/g × Hfusion


How is stoichiometry used to calculate energy when a mass of liquid freezes?

Grams liquid × mol/g × Hfusion


How do you get the energy released when 150 grams of water freezes?

To calculate the energy released when 150 grams of water freezes, you need to know the heat of fusion of water, which is 334 J/g. You can then multiply this value by the mass of water to find the energy released. In this case, it would be 150 grams * 334 J/g = 50,100 J or 50.1 kJ.


How much energy is released when 1.56 kg of ethanol 46.0 gmol freezes?

The heat of fusion of ethanol is 4.94 kJ/mol-167 - 168 KJ


When wax freezes does it release energy?

Yes, when wax freezes, energy is released in the form of heat. This is because when a substance changes from a liquid to a solid state, its molecules slow down and release energy in the form of heat as they rearrange into a more ordered structure.


The molar heat of fusion for water is 6.008 kJmol What quantity of heat energy is released when 253 g of liquid water freezes?

To calculate the heat released when 253 g of water freezes, first convert the mass to moles using the molar mass of water (18.015 g/mol). Then, use the molar heat of fusion to determine the total heat released. Therefore, 253 g of water is 14.05 moles (253 g / 18.015 g/mol) and the heat released is 84.5 kJ (6.008 kJ/mol * 14.05 mol).