By adding the average atomic masses of all elements in the compound.
The percentage of nitrogen in N2O4 is 63.6%. This is determined by dividing the molar mass of nitrogen in N2O4 by the molar mass of the compound and then multiplying by 100.
To find the percent of oxygen by mass in a compound, you need to know the molar mass of the compound and the molar mass of oxygen. Divide the molar mass of oxygen by the molar mass of the compound and multiply by 100 to get the percentage.
The percentage composition of molar mass in a compound is the percentage of each element's mass contribution to the total molar mass of the compound.
To find the molar mass of the nonelectrolyte compound, we need to use the formula: Molar mass (mass of compound / moles of compound) First, we need to find the moles of the compound by using the formula: moles mass / molar mass Given that the mass of the compound is 4.305 g and it is dissolved in 105 g of water, we can calculate the moles of the compound. Next, we can find the molar mass of the compound by rearranging the formula: Molar mass mass / moles By plugging in the values, we can calculate the molar mass of the nonelectrolyte compound.
The empirical formula NH2Cl has a molar mass of 51.5 g/mol, so the molecular formula can be determined by finding the ratio of the molar mass of the molecular formula to the molar mass of the empirical formula. The molecular formula of the compound is therefore NH2Cl2.
The molar mass of a compound is equal to 1 mol.
1 mol is equivalent to the molar mass of a compound, in grams.
The percentage of nitrogen in N2O4 is 63.6%. This is determined by dividing the molar mass of nitrogen in N2O4 by the molar mass of the compound and then multiplying by 100.
To find the percent of oxygen by mass in a compound, you need to know the molar mass of the compound and the molar mass of oxygen. Divide the molar mass of oxygen by the molar mass of the compound and multiply by 100 to get the percentage.
The molecular formula of a compound can not be determined solely based on its molar mass. In this case, without additional information, it is not possible to determine the molecular formula of the compound CH2.
The percentage composition of molar mass in a compound is the percentage of each element's mass contribution to the total molar mass of the compound.
To find the molar mass of the nonelectrolyte compound, we need to use the formula: Molar mass (mass of compound / moles of compound) First, we need to find the moles of the compound by using the formula: moles mass / molar mass Given that the mass of the compound is 4.305 g and it is dissolved in 105 g of water, we can calculate the moles of the compound. Next, we can find the molar mass of the compound by rearranging the formula: Molar mass mass / moles By plugging in the values, we can calculate the molar mass of the nonelectrolyte compound.
Yes, because the mass of each element in a compound depends on the mass of the compound.
The empirical formula NH2Cl has a molar mass of 51.5 g/mol, so the molecular formula can be determined by finding the ratio of the molar mass of the molecular formula to the molar mass of the empirical formula. The molecular formula of the compound is therefore NH2Cl2.
Molar mass depend on the ,mass,type and number of atoms in molecules of compound.
Multiply the number of moles times the molar mass of the compound. Moles cancel and you are left with mass in grams.For example: What is the mass of 2.47 moles of sodium chloride, NaCl?Known: The molar mass of NaCl is 58.44g/mol. (Using atomic weights in grams from the periodic table.)Solution:2.47mol NaCl x 58.44g/mol NaCl = 144g NaCl
the Atomic Mass in g/ml is the molar mass of the element