1 mole LiCl = 42.394g = 6.022 x 1023 formula units (not molecules because it is ionic)
127.17g LiCl x 6.022 x 1023 formula units/42.394g = 1.8064 x 1024 formula units
To calculate the number of molecules in a sample, you need to know the mass of the sample and the molar mass of the compound. Then you can use Avogadro's number (6.022 x 10^23) to convert from grams to molecules.
To calculate the number of molecules in a sample of dimethylmercury, you would first need to determine the number of moles in the sample using the molar mass of dimethylmercury. Then you can use Avogadro's number (6.022 x 10^23 molecules/mol) to calculate the number of molecules.
A 50g sample of H2O contains approximately 2.78 x 10^24 molecules of water. This is calculated by first converting the mass to moles, then using Avogadro's number to determine the number of molecules present in that many moles of water.
To determine the number of molecules in a sample, we need to know the molar mass of dimethylmercury (C2H6Hg). The molar mass of dimethylmercury is approximately 230.62 g/mol. Using this molar mass, we can calculate that there are approximately 2.23 x 10^22 molecules in a 7.85-g sample of dimethylmercury.
To determine the number of molecules in a sample, you need to know the molar mass of the compound. For dimethylmercury, the molar mass is approximately 230.6 g/mol. You can then use the formula n = m/M, where n is the number of moles, m is the mass of the sample, and M is the molar mass, to calculate the number of molecules in the sample.
To calculate the number of molecules in a sample, you need to know the mass of the sample and the molar mass of the compound. Then you can use Avogadro's number (6.022 x 10^23) to convert from grams to molecules.
The answer is 1,357.10 ex.23 molecules.
To calculate the number of molecules in a sample of dimethylmercury, you would first need to determine the number of moles in the sample using the molar mass of dimethylmercury. Then you can use Avogadro's number (6.022 x 10^23 molecules/mol) to calculate the number of molecules.
3
1.24*10^22
1.814*1022
A 50g sample of H2O contains approximately 2.78 x 10^24 molecules of water. This is calculated by first converting the mass to moles, then using Avogadro's number to determine the number of molecules present in that many moles of water.
In a sample of chlorine gas, all molecules are diatomic composed of two chlorine atoms. This means there is only one type of molecule in the sample, with a molecular formula Cl2.
6.022*10^23 molecules of anything is one mole of that thing
To determine the number of molecules in a sample, we need to know the molar mass of dimethylmercury (C2H6Hg). The molar mass of dimethylmercury is approximately 230.62 g/mol. Using this molar mass, we can calculate that there are approximately 2.23 x 10^22 molecules in a 7.85-g sample of dimethylmercury.
To determine the number of molecules in a sample, you need to know the molar mass of the compound. For dimethylmercury, the molar mass is approximately 230.6 g/mol. You can then use the formula n = m/M, where n is the number of moles, m is the mass of the sample, and M is the molar mass, to calculate the number of molecules in the sample.
To calculate the number of molecules in aluminum phosphate, we need to know the mass of the sample. Given the mass of aluminum phosphate, we can use Avogadro's number (6.022 x 10^23 molecules/mol) to calculate the number of molecules in the sample.