20.1 moles
Given/Known:1mole of H2 = 2.01588g H21mole of H2 = 6.022 x 1023 molecules H21) Convert molecules of H2 to moles of H2 by doing the following calculation.9.4 x 1025 molecules H2 x (1mol H2/6.022 x 1023 molecules H2) = 156mol H22) Convert the moles of H2 to mass in grams of H2.156mol H2 x (2.01588g H2/1mol H2) = 314g H2
To find the number of molecules produced, first calculate the number of moles of H2 using its molar mass. Then, use the balanced chemical equation to relate the number of moles of H2 to NH3. Finally, convert the moles of NH3 to molecules using Avogadro's number, which is 6.022 x 10^23 molecules/mol.
The reaction would be H2 + 3N2 ==>2NH3moles H2 used = 5.69104 g x 1 mole/2.00 = 2.84552 moles H2moles NH3 produced (assuming N2 is NOT limiting) = 2 moles NH3/mole H2 x 2.84552 moles H2 = 5.69104 moles NH3 producedMolecules of NH3 produced = 5.69104 moles x 6.02x10^23 molecules/mole = 3.4x10^24 molecules
Balanced equation is N2 + 3H2 ==> 2NH33.07104 g H2 x 1 mol/1.0079 g = 1.7679 moles H2 presentmoles NH3 produced = 2/3 x 1.7679 moles = 1.1786 moles NH3 formedmolecules NH3 = 1.1786 moles x 6.022x10^23 molecules/mole = 7.098x10^23 molecules (4 sig figs based on sig figs used in 6.022x10^23)
To calculate the number of molecules, you first need to determine the number of moles of H2 in the 21.25 gram sample using the molar mass of H2 (2 grams/mol). Then, use Avogadro's number (6.022 x 10^23 molecules/mol) to convert moles to molecules.
2 moles.
The answer is 1,57.10e27 molecules.
Given/Known:1mole of H2 = 2.01588g H21mole of H2 = 6.022 x 1023 molecules H21) Convert molecules of H2 to moles of H2 by doing the following calculation.9.4 x 1025 molecules H2 x (1mol H2/6.022 x 1023 molecules H2) = 156mol H22) Convert the moles of H2 to mass in grams of H2.156mol H2 x (2.01588g H2/1mol H2) = 314g H2
0.175 X Avogadro's Number = about 1.05 X 1023.
To find the number of molecules produced, first calculate the number of moles of H2 using its molar mass. Then, use the balanced chemical equation to relate the number of moles of H2 to NH3. Finally, convert the moles of NH3 to molecules using Avogadro's number, which is 6.022 x 10^23 molecules/mol.
The reaction would be H2 + 3N2 ==>2NH3moles H2 used = 5.69104 g x 1 mole/2.00 = 2.84552 moles H2moles NH3 produced (assuming N2 is NOT limiting) = 2 moles NH3/mole H2 x 2.84552 moles H2 = 5.69104 moles NH3 producedMolecules of NH3 produced = 5.69104 moles x 6.02x10^23 molecules/mole = 3.4x10^24 molecules
Balanced equation is N2 + 3H2 ==> 2NH33.07104 g H2 x 1 mol/1.0079 g = 1.7679 moles H2 presentmoles NH3 produced = 2/3 x 1.7679 moles = 1.1786 moles NH3 formedmolecules NH3 = 1.1786 moles x 6.022x10^23 molecules/mole = 7.098x10^23 molecules (4 sig figs based on sig figs used in 6.022x10^23)
To calculate the number of molecules, you first need to determine the number of moles of H2 in the 21.25 gram sample using the molar mass of H2 (2 grams/mol). Then, use Avogadro's number (6.022 x 10^23 molecules/mol) to convert moles to molecules.
8.086g
12.044x10^[24] atoms
To determine the number of molecules of NH3 produced from 5.81 x 10^-4 g of H2, you first need to calculate the moles of H2 using its molar mass. Once you know the moles of H2, you can use the balanced chemical equation of the reaction to find the mole ratio between H2 and NH3. Finally, convert the moles of NH3 to molecules by multiplying by Avogadro's number (6.022 x 10^23 molecules/mol).
To find the number of hydrogen molecules, first calculate the number of moles in 31.8 L of H2 at STP using the ideal gas law. Then use Avogadro's number (6.022 x 10^23 molecules/mol) to convert moles to molecules.