5t
When the amount of oxygen is limited, carbon and oxygen react to form carbon monoxide. How many grams of CO can be formed from 35 grams of oxygen?
To calculate the amount of CO formed from 35.0 grams of oxygen, you need to determine the limiting reactant. First, convert 35.0 grams of O2 to moles. Then, use the balanced equation to calculate the moles of CO that can be formed from the moles of O2. Finally, convert the moles of CO to grams using the molar mass of CO.
The amount of product formed in a reaction is determined by the stoichiometry of the reaction. Without the specific reaction given, we can't determine the grams of product produced from 22.4g of a reactant. The balanced chemical equation is needed to calculate the amount of product formed.
Iron oxide is formed by the reaction of iron and oxygen in a 1:1 ratio by mass. Therefore, the 55 g of iron will react completely with 55 g of oxygen to form iron oxide.
To find the mass of BrCl formed, you first need to determine the limiting reactant by comparing the mole ratios of Cl2 and Br2 in the balanced equation. Once you know the limiting reactant, you can use stoichiometry to calculate the moles of BrCl formed. Finally, convert the moles of BrCl to grams using the molar mass of BrCl.
The balanced equation for the reaction is: 4 Na + O2 -> 2 Na2O. From the equation, 4 moles of sodium will react to form 2 moles of sodium oxide. Calculate the molar mass of Na2O (sodium oxide) to find out how many grams will be formed.
When the amount of oxygen is limited, carbon and oxygen react to form carbon monoxide. How many grams of CO can be formed from 35 grams of oxygen?
None. When NH reacts there is no Pb involved and so there is none formed.
To form ammonia (NH3) from nitrogen (N2) and hydrogen (H2), the balanced chemical equation is N2 + 3H2 → 2NH3. This means that for every mole of nitrogen, 3 moles of hydrogen are required. Given that nitrogen is limiting in this case, all 70 grams of nitrogen will react with 210 grams (3 times 70) of hydrogen to form 70 grams of ammonia. This reaction will consume all the hydrogen, leaving no grams of hydrogen leftover.
The mass of water is 5,4 g.
To calculate the amount of CO formed from 35.0 grams of oxygen, you need to determine the limiting reactant. First, convert 35.0 grams of O2 to moles. Then, use the balanced equation to calculate the moles of CO that can be formed from the moles of O2. Finally, convert the moles of CO to grams using the molar mass of CO.
The amount of product formed in a reaction is determined by the stoichiometry of the reaction. Without the specific reaction given, we can't determine the grams of product produced from 22.4g of a reactant. The balanced chemical equation is needed to calculate the amount of product formed.
Iron oxide is formed by the reaction of iron and oxygen in a 1:1 ratio by mass. Therefore, the 55 g of iron will react completely with 55 g of oxygen to form iron oxide.
if 14 grams of nitrogen is formed, then 8 grams of oxygen, add those two together and you get 22. and that's 22 of the 40 grams used, so 40 subtracted by 22 is 18. 18 grams of water would be formed.
None. A reaction of ammonia does not produce any lead!
the same amount would have to stay in grams, so if 14 grams of nitrogen is formed, then 8 grams of oxygen, add those two together and you get 22. and that's 22 of the 40 grams used, so 40 subtracted by 22 is 18. 18 grams of water would be formed.
the same amount would have to stay in grams, so if 14 grams of nitrogen is formed, then 8 grams of oxygen, add those two together and you get 22. and that's 22 of the 40 grams used, so 40 subtracted by 22 is 18. 18 grams of water would be formed.