answersLogoWhite

0

What else can I help you with?

Continue Learning about Chemistry

If you multiply the following reaction by 2 to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this intermediate reaction?

When you multiply a reaction by a factor, you also multiply the enthalpy change by the same factor. Therefore, if you multiply the reaction by 2, the final value for the enthalpy of reaction for the intermediate reaction will also be multiplied by 2.


If you need to multiply the following reaction by 2 to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this intermediate reac?

If you need to multiply the reaction by 2, you must also multiply the enthalpy change by 2. The final value for the enthalpy of the reaction used for the intermediate reaction would be 2 times the original enthalpy value.


If you need to multiply the reaction by 2 to be an intermediate reaction in a hess law problem what would be the final value for the enthalpy of reaction you use for this intermediate reaction?

-572k


If you need to reverse the following reaction and multiply it by 2 in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you?

If you need to reverse a reaction and multiply it by 2 in Hess's law, the enthalpy change of the reaction will also change sign and double in magnitude. This is because reversing a reaction changes the sign of the enthalpy change. Multiplying the reaction by a factor also multiplies the enthalpy change by that factor. Therefore, the final value for the enthalpy of the reaction will be twice the original magnitude but with the opposite sign.


If you need to reverse the following reaction in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this in?

The final value for the enthalpy of the reverse reaction used in a Hess's law problem would simply be the negative of the original value of the enthalpy of the forward reaction. This is because reversing a reaction changes the sign of the enthalpy change.

Related Questions

If you multiply the following reaction by 2 to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this intermediate reaction?

When you multiply a reaction by a factor, you also multiply the enthalpy change by the same factor. Therefore, if you multiply the reaction by 2, the final value for the enthalpy of reaction for the intermediate reaction will also be multiplied by 2.


If you need to multiply the following reaction by 2 to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this intermediate reac?

If you need to multiply the reaction by 2, you must also multiply the enthalpy change by 2. The final value for the enthalpy of the reaction used for the intermediate reaction would be 2 times the original enthalpy value.


If you need to multiply the reaction by 2 to be an intermediate reaction in a hess law problem what would be the final value for the enthalpy of reaction you use for this intermediate reaction?

-572k


If you need to reverse the following reaction and multiply it by 2 in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you?

If you need to reverse a reaction and multiply it by 2 in Hess's law, the enthalpy change of the reaction will also change sign and double in magnitude. This is because reversing a reaction changes the sign of the enthalpy change. Multiplying the reaction by a factor also multiplies the enthalpy change by that factor. Therefore, the final value for the enthalpy of the reaction will be twice the original magnitude but with the opposite sign.


What does Hess's law say about the enthalpy of a reaction?

The enthalpy of a reaction does not depend on the reactant path taken.


What does Hesses law state?

The enthalpy of a reaction is the sum of the enthalpies of intermediate reaction.


If you need to reverse the following reaction in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this in?

The final value for the enthalpy of the reverse reaction used in a Hess's law problem would simply be the negative of the original value of the enthalpy of the forward reaction. This is because reversing a reaction changes the sign of the enthalpy change.


What is true of the enthalpy value of an intermediate reaction?

It is multiplied by 2 if the intermediate reaction is multiplied by 2


What would be the final value for the enthalpy of reaction you use for this intermediate reaction?

Can you please provide me with the specific reaction or context for which you need the enthalpy value?


If you need to reverse the following reaction in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of rea?

286 kJ


If you need to reverse the following reaction in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this interme?

To reverse a reaction in a Hess's law problem, you need to change the sign of the enthalpy change associated with that reaction. If the original reaction has an enthalpy of reaction ( \Delta H ), the final value for the enthalpy of the reversed reaction would be ( -\Delta H ). This allows you to correctly account for the energy change in the overall pathway when combining reactions.


How can an unknown deltaH reaction be determined using Hess's law?

By manipulating known reactions with known enthalpy changes to create a series of intermediate reactions that eventually add up to the desired reaction whose enthalpy change is unknown. By applying Hess's law, the sum of the enthalpy changes for the intermediate reactions will equal the enthalpy change of the desired reaction, allowing you to determine its enthalpy change.