The "Kelvin" scale, which uses the same size of degree as Celsius, but with a zero value at absolute zero. (on the Celsius scale, absolute zero is -273.15° C) There are no negative temperature values on the Kelvin scale.
Yes, temperature is typically expressed in Celsius when using Charles' Law, as the relationship between volume and temperature is directly proportional. It is important to ensure that the temperature is measured in Kelvin when using the ideal gas law.
For Charles' Law(V1/T1=V2/T2) T1 and T2 must be in Kelvin temperature scale. This way their is no negatives or zero as 0 on the Kelvin scale would be no kinetic energy (absolute zero) which as never occurred as far as we are aware. The Kelvin temperature scale is Celcius minus 273.15 °. The volume however can be whatever you want as long as V1 and V2 are the same in the equation
The temperature scale that must be used in all gas laws is the Kelvin scale. This is because the Kelvin scale starts at absolute zero, which is the point where particles have minimal kinetic energy, making it the ideal scale for gas laws calculations.
The ideal gas equation should be used with the Kelvin temperature scale because it is an absolute temperature scale where 0 K represents absolute zero. Using Celsius or Fahrenheit scales could lead to incorrect calculations in the ideal gas equation.
To increase the volume of a gas, either the temperature must rise or the pressure must decrease, according to Boyle's Law and Charles's Law. This relationship is known as the ideal gas law, which states that the volume of a gas is directly proportional to its temperature and inversely proportional to its pressure.
The temperature scale that must be used in Charles' Law problems is the Kelvin scale. This is because Charles' Law relates the volume of a gas to its temperature in Kelvin, and temperature must be in Kelvin to ensure a direct relationship between volume and temperature.
Temperature must be in Kelvin when using Charles's law, as it is a gas law that states that the volume of a gas is directly proportional to its absolute temperature when pressure and amount of gas are constant.
Temperature must be in Kelvin when using Charles's Law because it is an absolute temperature scale that starts at zero Kelvin, where molecular motion theoretically stops. Since Charles's Law involves the ratio of volumes and temperatures, using the Kelvin scale ensures consistency and accurate results in the calculations.
Yes, temperature is typically expressed in Celsius when using Charles' Law, as the relationship between volume and temperature is directly proportional. It is important to ensure that the temperature is measured in Kelvin when using the ideal gas law.
An absolute scale, such as Kelvin.
For Charles' Law(V1/T1=V2/T2) T1 and T2 must be in Kelvin temperature scale. This way their is no negatives or zero as 0 on the Kelvin scale would be no kinetic energy (absolute zero) which as never occurred as far as we are aware. The Kelvin temperature scale is Celcius minus 273.15 °. The volume however can be whatever you want as long as V1 and V2 are the same in the equation
The Kelvin scale is used.
Temperature must be measured in Kelvin for both Charles's Law and the Combined Gas Law. This is because Kelvin is on an absolute scale, where 0 K represents absolute zero, ensuring accurate calculations in these gas laws.
The temperature scale that must be used in all gas laws is the Kelvin scale. This is because the Kelvin scale starts at absolute zero, which is the point where particles have minimal kinetic energy, making it the ideal scale for gas laws calculations.
The ideal gas equation should be used with the Kelvin temperature scale because it is an absolute temperature scale where 0 K represents absolute zero. Using Celsius or Fahrenheit scales could lead to incorrect calculations in the ideal gas equation.
Pick a number between 1 and 10 - the question MUST be answered by YOU - we are not applying for a job, YOU are.
Temperature readings are typically measured on a scale, such as Celsius or Fahrenheit. To get a higher reading on a thermometer, the temperature must increase on that scale. For example, if you have a thermometer in Celsius and the current reading is 20°C, the temperature would need to increase to above 20°C to see a higher reading.